MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltexpri Structured version   Visualization version   GIF version

Theorem ltexpri 9721
Description: Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 13-May-1996.) (Revised by Mario Carneiro, 14-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ltexpri (𝐴<P 𝐵 → ∃𝑥P (𝐴 +P 𝑥) = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem ltexpri
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelpr 9676 . . 3 <P ⊆ (P × P)
21brel 5080 . 2 (𝐴<P 𝐵 → (𝐴P𝐵P))
3 ltprord 9708 . . 3 ((𝐴P𝐵P) → (𝐴<P 𝐵𝐴𝐵))
4 oveq2 6535 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝑤 +Q 𝑦) = (𝑤 +Q 𝑧))
54eleq1d 2671 . . . . . . . . . 10 (𝑦 = 𝑧 → ((𝑤 +Q 𝑦) ∈ 𝐵 ↔ (𝑤 +Q 𝑧) ∈ 𝐵))
65anbi2d 735 . . . . . . . . 9 (𝑦 = 𝑧 → ((¬ 𝑤𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵) ↔ (¬ 𝑤𝐴 ∧ (𝑤 +Q 𝑧) ∈ 𝐵)))
76exbidv 1836 . . . . . . . 8 (𝑦 = 𝑧 → (∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵) ↔ ∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑧) ∈ 𝐵)))
87cbvabv 2733 . . . . . . 7 {𝑦 ∣ ∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)} = {𝑧 ∣ ∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑧) ∈ 𝐵)}
98ltexprlem5 9718 . . . . . 6 ((𝐵P𝐴𝐵) → {𝑦 ∣ ∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)} ∈ P)
109adantll 745 . . . . 5 (((𝐴P𝐵P) ∧ 𝐴𝐵) → {𝑦 ∣ ∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)} ∈ P)
118ltexprlem6 9719 . . . . . 6 (((𝐴P𝐵P) ∧ 𝐴𝐵) → (𝐴 +P {𝑦 ∣ ∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)}) ⊆ 𝐵)
128ltexprlem7 9720 . . . . . 6 (((𝐴P𝐵P) ∧ 𝐴𝐵) → 𝐵 ⊆ (𝐴 +P {𝑦 ∣ ∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)}))
1311, 12eqssd 3584 . . . . 5 (((𝐴P𝐵P) ∧ 𝐴𝐵) → (𝐴 +P {𝑦 ∣ ∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)}) = 𝐵)
14 oveq2 6535 . . . . . . 7 (𝑥 = {𝑦 ∣ ∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)} → (𝐴 +P 𝑥) = (𝐴 +P {𝑦 ∣ ∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)}))
1514eqeq1d 2611 . . . . . 6 (𝑥 = {𝑦 ∣ ∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)} → ((𝐴 +P 𝑥) = 𝐵 ↔ (𝐴 +P {𝑦 ∣ ∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)}) = 𝐵))
1615rspcev 3281 . . . . 5 (({𝑦 ∣ ∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)} ∈ P ∧ (𝐴 +P {𝑦 ∣ ∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)}) = 𝐵) → ∃𝑥P (𝐴 +P 𝑥) = 𝐵)
1710, 13, 16syl2anc 690 . . . 4 (((𝐴P𝐵P) ∧ 𝐴𝐵) → ∃𝑥P (𝐴 +P 𝑥) = 𝐵)
1817ex 448 . . 3 ((𝐴P𝐵P) → (𝐴𝐵 → ∃𝑥P (𝐴 +P 𝑥) = 𝐵))
193, 18sylbid 228 . 2 ((𝐴P𝐵P) → (𝐴<P 𝐵 → ∃𝑥P (𝐴 +P 𝑥) = 𝐵))
202, 19mpcom 37 1 (𝐴<P 𝐵 → ∃𝑥P (𝐴 +P 𝑥) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382   = wceq 1474  wex 1694  wcel 1976  {cab 2595  wrex 2896  wpss 3540   class class class wbr 4577  (class class class)co 6527   +Q cplq 9533  Pcnp 9537   +P cpp 9539  <P cltp 9541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-inf2 8398
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-oadd 7428  df-omul 7429  df-er 7606  df-ni 9550  df-pli 9551  df-mi 9552  df-lti 9553  df-plpq 9586  df-mpq 9587  df-ltpq 9588  df-enq 9589  df-nq 9590  df-erq 9591  df-plq 9592  df-mq 9593  df-1nq 9594  df-rq 9595  df-ltnq 9596  df-np 9659  df-plp 9661  df-ltp 9663
This theorem is referenced by:  ltaprlem  9722  recexsrlem  9780  mulgt0sr  9782  map2psrpr  9787
  Copyright terms: Public domain W3C validator