Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltexp2 Structured version   Visualization version   GIF version

Theorem ltexp2 12776
 Description: Ordering law for exponentiation. (Contributed by NM, 2-Aug-2006.) (Revised by Mario Carneiro, 5-Jun-2014.)
Assertion
Ref Expression
ltexp2 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → (𝑀 < 𝑁 ↔ (𝐴𝑀) < (𝐴𝑁)))

Proof of Theorem ltexp2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6557 . . . . . 6 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴𝑦))
2 oveq2 6557 . . . . . 6 (𝑥 = 𝑀 → (𝐴𝑥) = (𝐴𝑀))
3 oveq2 6557 . . . . . 6 (𝑥 = 𝑁 → (𝐴𝑥) = (𝐴𝑁))
4 zssre 11261 . . . . . 6 ℤ ⊆ ℝ
5 simpl 472 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 𝐴 ∈ ℝ)
6 0red 9920 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 0 ∈ ℝ)
7 1red 9934 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 1 ∈ ℝ)
8 0lt1 10429 . . . . . . . . . . 11 0 < 1
98a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 0 < 1)
10 simpr 476 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 1 < 𝐴)
116, 7, 5, 9, 10lttrd 10077 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 0 < 𝐴)
125, 11elrpd 11745 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 𝐴 ∈ ℝ+)
13 rpexpcl 12741 . . . . . . . 8 ((𝐴 ∈ ℝ+𝑥 ∈ ℤ) → (𝐴𝑥) ∈ ℝ+)
1412, 13sylan 487 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑥 ∈ ℤ) → (𝐴𝑥) ∈ ℝ+)
1514rpred 11748 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑥 ∈ ℤ) → (𝐴𝑥) ∈ ℝ)
16 simpll 786 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐴 ∈ ℝ)
17 simprl 790 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℤ)
18 simprr 792 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℤ)
19 simplr 788 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 1 < 𝐴)
20 ltexp2a 12774 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (1 < 𝐴𝑥 < 𝑦)) → (𝐴𝑥) < (𝐴𝑦))
2120expr 641 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ 1 < 𝐴) → (𝑥 < 𝑦 → (𝐴𝑥) < (𝐴𝑦)))
2216, 17, 18, 19, 21syl31anc 1321 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 < 𝑦 → (𝐴𝑥) < (𝐴𝑦)))
231, 2, 3, 4, 15, 22ltord1 10433 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀 < 𝑁 ↔ (𝐴𝑀) < (𝐴𝑁)))
2423ancom2s 840 . . . 4 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑀 < 𝑁 ↔ (𝐴𝑀) < (𝐴𝑁)))
2524exp43 638 . . 3 (𝐴 ∈ ℝ → (1 < 𝐴 → (𝑁 ∈ ℤ → (𝑀 ∈ ℤ → (𝑀 < 𝑁 ↔ (𝐴𝑀) < (𝐴𝑁))))))
2625com24 93 . 2 (𝐴 ∈ ℝ → (𝑀 ∈ ℤ → (𝑁 ∈ ℤ → (1 < 𝐴 → (𝑀 < 𝑁 ↔ (𝐴𝑀) < (𝐴𝑁))))))
27263imp1 1272 1 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → (𝑀 < 𝑁 ↔ (𝐴𝑀) < (𝐴𝑁)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   ∈ wcel 1977   class class class wbr 4583  (class class class)co 6549  ℝcr 9814  0cc0 9815  1c1 9816   < clt 9953  ℤcz 11254  ℝ+crp 11708  ↑cexp 12722 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-seq 12664  df-exp 12723 This theorem is referenced by:  leexp2  12777  ltexp2r  12779  ltexp2d  12900
 Copyright terms: Public domain W3C validator