MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltdifltdiv Structured version   Visualization version   GIF version

Theorem ltdifltdiv 12497
Description: If the dividend of a division is less than the difference between a real number and the divisor, the floor function of the division plus 1 is less than the division of the real number by the divisor. (Contributed by Alexander van der Vekens, 14-Apr-2018.)
Assertion
Ref Expression
ltdifltdiv ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → (𝐴 < (𝐶𝐵) → ((⌊‘(𝐴 / 𝐵)) + 1) < (𝐶 / 𝐵)))

Proof of Theorem ltdifltdiv
StepHypRef Expression
1 refldivcl 12486 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘(𝐴 / 𝐵)) ∈ ℝ)
2 peano2re 10088 . . . . . 6 ((⌊‘(𝐴 / 𝐵)) ∈ ℝ → ((⌊‘(𝐴 / 𝐵)) + 1) ∈ ℝ)
31, 2syl 17 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((⌊‘(𝐴 / 𝐵)) + 1) ∈ ℝ)
433adant3 1074 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → ((⌊‘(𝐴 / 𝐵)) + 1) ∈ ℝ)
54adantr 480 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → ((⌊‘(𝐴 / 𝐵)) + 1) ∈ ℝ)
6 rerpdivcl 11737 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ)
7 peano2re 10088 . . . . . 6 ((𝐴 / 𝐵) ∈ ℝ → ((𝐴 / 𝐵) + 1) ∈ ℝ)
86, 7syl 17 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 / 𝐵) + 1) ∈ ℝ)
983adant3 1074 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → ((𝐴 / 𝐵) + 1) ∈ ℝ)
109adantr 480 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → ((𝐴 / 𝐵) + 1) ∈ ℝ)
11 rerpdivcl 11737 . . . . . 6 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐶 / 𝐵) ∈ ℝ)
1211ancoms 468 . . . . 5 ((𝐵 ∈ ℝ+𝐶 ∈ ℝ) → (𝐶 / 𝐵) ∈ ℝ)
13123adant1 1072 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → (𝐶 / 𝐵) ∈ ℝ)
1413adantr 480 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → (𝐶 / 𝐵) ∈ ℝ)
1513adant3 1074 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → (⌊‘(𝐴 / 𝐵)) ∈ ℝ)
1615adantr 480 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → (⌊‘(𝐴 / 𝐵)) ∈ ℝ)
1763adant3 1074 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → (𝐴 / 𝐵) ∈ ℝ)
1817adantr 480 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → (𝐴 / 𝐵) ∈ ℝ)
19 1red 9934 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → 1 ∈ ℝ)
20 3simpa 1051 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+))
2120adantr 480 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+))
22 fldivle 12494 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘(𝐴 / 𝐵)) ≤ (𝐴 / 𝐵))
2321, 22syl 17 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → (⌊‘(𝐴 / 𝐵)) ≤ (𝐴 / 𝐵))
2416, 18, 19, 23leadd1dd 10520 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → ((⌊‘(𝐴 / 𝐵)) + 1) ≤ ((𝐴 / 𝐵) + 1))
25 rpre 11715 . . . . . . 7 (𝐵 ∈ ℝ+𝐵 ∈ ℝ)
26 ltaddsub 10381 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) < 𝐶𝐴 < (𝐶𝐵)))
2725, 26syl3an2 1352 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → ((𝐴 + 𝐵) < 𝐶𝐴 < (𝐶𝐵)))
2827biimpar 501 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → (𝐴 + 𝐵) < 𝐶)
29 recn 9905 . . . . . . . . . . 11 ((𝐴 / 𝐵) ∈ ℝ → (𝐴 / 𝐵) ∈ ℂ)
306, 29syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℂ)
31303adant3 1074 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → (𝐴 / 𝐵) ∈ ℂ)
32 1cnd 9935 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → 1 ∈ ℂ)
33 rpcn 11717 . . . . . . . . . 10 (𝐵 ∈ ℝ+𝐵 ∈ ℂ)
34333ad2ant2 1076 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → 𝐵 ∈ ℂ)
3531, 32, 34adddird 9944 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → (((𝐴 / 𝐵) + 1) · 𝐵) = (((𝐴 / 𝐵) · 𝐵) + (1 · 𝐵)))
36 recn 9905 . . . . . . . . . . 11 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
37363ad2ant1 1075 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → 𝐴 ∈ ℂ)
38 rpne0 11724 . . . . . . . . . . 11 (𝐵 ∈ ℝ+𝐵 ≠ 0)
39383ad2ant2 1076 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → 𝐵 ≠ 0)
4037, 34, 39divcan1d 10681 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → ((𝐴 / 𝐵) · 𝐵) = 𝐴)
4133mulid2d 9937 . . . . . . . . . 10 (𝐵 ∈ ℝ+ → (1 · 𝐵) = 𝐵)
42413ad2ant2 1076 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → (1 · 𝐵) = 𝐵)
4340, 42oveq12d 6567 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → (((𝐴 / 𝐵) · 𝐵) + (1 · 𝐵)) = (𝐴 + 𝐵))
4435, 43eqtrd 2644 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → (((𝐴 / 𝐵) + 1) · 𝐵) = (𝐴 + 𝐵))
45 recn 9905 . . . . . . . . 9 (𝐶 ∈ ℝ → 𝐶 ∈ ℂ)
46453ad2ant3 1077 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → 𝐶 ∈ ℂ)
4746, 34, 39divcan1d 10681 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → ((𝐶 / 𝐵) · 𝐵) = 𝐶)
4844, 47breq12d 4596 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → ((((𝐴 / 𝐵) + 1) · 𝐵) < ((𝐶 / 𝐵) · 𝐵) ↔ (𝐴 + 𝐵) < 𝐶))
4948adantr 480 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → ((((𝐴 / 𝐵) + 1) · 𝐵) < ((𝐶 / 𝐵) · 𝐵) ↔ (𝐴 + 𝐵) < 𝐶))
5028, 49mpbird 246 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → (((𝐴 / 𝐵) + 1) · 𝐵) < ((𝐶 / 𝐵) · 𝐵))
5117, 7syl 17 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → ((𝐴 / 𝐵) + 1) ∈ ℝ)
52 simp2 1055 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → 𝐵 ∈ ℝ+)
5351, 13, 52ltmul1d 11789 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → (((𝐴 / 𝐵) + 1) < (𝐶 / 𝐵) ↔ (((𝐴 / 𝐵) + 1) · 𝐵) < ((𝐶 / 𝐵) · 𝐵)))
5453adantr 480 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → (((𝐴 / 𝐵) + 1) < (𝐶 / 𝐵) ↔ (((𝐴 / 𝐵) + 1) · 𝐵) < ((𝐶 / 𝐵) · 𝐵)))
5550, 54mpbird 246 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → ((𝐴 / 𝐵) + 1) < (𝐶 / 𝐵))
565, 10, 14, 24, 55lelttrd 10074 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → ((⌊‘(𝐴 / 𝐵)) + 1) < (𝐶 / 𝐵))
5756ex 449 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → (𝐴 < (𝐶𝐵) → ((⌊‘(𝐴 / 𝐵)) + 1) < (𝐶 / 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780   class class class wbr 4583  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cle 9954  cmin 10145   / cdiv 10563  +crp 11708  cfl 12453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fl 12455
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator