Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltcvrntr Structured version   Visualization version   GIF version

Theorem ltcvrntr 33728
 Description: Non-transitive condition for the covers relation. (Contributed by NM, 18-Jun-2012.)
Hypotheses
Ref Expression
ltltncvr.b 𝐵 = (Base‘𝐾)
ltltncvr.s < = (lt‘𝐾)
ltltncvr.c 𝐶 = ( ⋖ ‘𝐾)
Assertion
Ref Expression
ltcvrntr ((𝐾𝐴 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 < 𝑌𝑌𝐶𝑍) → ¬ 𝑋𝐶𝑍))

Proof of Theorem ltcvrntr
StepHypRef Expression
1 ltltncvr.b . . . . 5 𝐵 = (Base‘𝐾)
2 ltltncvr.s . . . . 5 < = (lt‘𝐾)
3 ltltncvr.c . . . . 5 𝐶 = ( ⋖ ‘𝐾)
41, 2, 3cvrlt 33575 . . . 4 (((𝐾𝐴𝑌𝐵𝑍𝐵) ∧ 𝑌𝐶𝑍) → 𝑌 < 𝑍)
54ex 449 . . 3 ((𝐾𝐴𝑌𝐵𝑍𝐵) → (𝑌𝐶𝑍𝑌 < 𝑍))
653adant3r1 1266 . 2 ((𝐾𝐴 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑌𝐶𝑍𝑌 < 𝑍))
71, 2, 3ltltncvr 33727 . 2 ((𝐾𝐴 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 < 𝑌𝑌 < 𝑍) → ¬ 𝑋𝐶𝑍))
86, 7sylan2d 498 1 ((𝐾𝐴 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 < 𝑌𝑌𝐶𝑍) → ¬ 𝑋𝐶𝑍))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   class class class wbr 4583  ‘cfv 5804  Basecbs 15695  ltcplt 16764   ⋖ ccvr 33567 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-covers 33571 This theorem is referenced by:  cvrntr  33729
 Copyright terms: Public domain W3C validator