MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltbval Structured version   Visualization version   GIF version

Theorem ltbval 19292
Description: Value of the well-order on finite bags. (Contributed by Mario Carneiro, 8-Feb-2015.)
Hypotheses
Ref Expression
ltbval.c 𝐶 = (𝑇 <bag 𝐼)
ltbval.d 𝐷 = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin}
ltbval.i (𝜑𝐼𝑉)
ltbval.t (𝜑𝑇𝑊)
Assertion
Ref Expression
ltbval (𝜑𝐶 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤))))})
Distinct variable groups:   𝑥,𝑦,𝐷   𝑤,,𝑥,𝑦,𝑧,𝐼   𝜑,,𝑥,𝑦   𝑤,𝑇,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑤)   𝐶(𝑥,𝑦,𝑧,𝑤,)   𝐷(𝑧,𝑤,)   𝑇()   𝑉(𝑥,𝑦,𝑧,𝑤,)   𝑊(𝑥,𝑦,𝑧,𝑤,)

Proof of Theorem ltbval
Dummy variables 𝑖 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltbval.c . 2 𝐶 = (𝑇 <bag 𝐼)
2 ltbval.t . . 3 (𝜑𝑇𝑊)
3 ltbval.i . . 3 (𝜑𝐼𝑉)
4 elex 3185 . . . 4 (𝑇𝑊𝑇 ∈ V)
5 elex 3185 . . . 4 (𝐼𝑉𝐼 ∈ V)
6 simpr 476 . . . . . . . . . . 11 ((𝑟 = 𝑇𝑖 = 𝐼) → 𝑖 = 𝐼)
76oveq2d 6565 . . . . . . . . . 10 ((𝑟 = 𝑇𝑖 = 𝐼) → (ℕ0𝑚 𝑖) = (ℕ0𝑚 𝐼))
8 rabeq 3166 . . . . . . . . . 10 ((ℕ0𝑚 𝑖) = (ℕ0𝑚 𝐼) → { ∈ (ℕ0𝑚 𝑖) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin})
97, 8syl 17 . . . . . . . . 9 ((𝑟 = 𝑇𝑖 = 𝐼) → { ∈ (ℕ0𝑚 𝑖) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin})
10 ltbval.d . . . . . . . . 9 𝐷 = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin}
119, 10syl6eqr 2662 . . . . . . . 8 ((𝑟 = 𝑇𝑖 = 𝐼) → { ∈ (ℕ0𝑚 𝑖) ∣ ( “ ℕ) ∈ Fin} = 𝐷)
1211sseq2d 3596 . . . . . . 7 ((𝑟 = 𝑇𝑖 = 𝐼) → ({𝑥, 𝑦} ⊆ { ∈ (ℕ0𝑚 𝑖) ∣ ( “ ℕ) ∈ Fin} ↔ {𝑥, 𝑦} ⊆ 𝐷))
13 simpl 472 . . . . . . . . . . . 12 ((𝑟 = 𝑇𝑖 = 𝐼) → 𝑟 = 𝑇)
1413breqd 4594 . . . . . . . . . . 11 ((𝑟 = 𝑇𝑖 = 𝐼) → (𝑧𝑟𝑤𝑧𝑇𝑤))
1514imbi1d 330 . . . . . . . . . 10 ((𝑟 = 𝑇𝑖 = 𝐼) → ((𝑧𝑟𝑤 → (𝑥𝑤) = (𝑦𝑤)) ↔ (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤))))
166, 15raleqbidv 3129 . . . . . . . . 9 ((𝑟 = 𝑇𝑖 = 𝐼) → (∀𝑤𝑖 (𝑧𝑟𝑤 → (𝑥𝑤) = (𝑦𝑤)) ↔ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤))))
1716anbi2d 736 . . . . . . . 8 ((𝑟 = 𝑇𝑖 = 𝐼) → (((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝑖 (𝑧𝑟𝑤 → (𝑥𝑤) = (𝑦𝑤))) ↔ ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))))
186, 17rexeqbidv 3130 . . . . . . 7 ((𝑟 = 𝑇𝑖 = 𝐼) → (∃𝑧𝑖 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝑖 (𝑧𝑟𝑤 → (𝑥𝑤) = (𝑦𝑤))) ↔ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))))
1912, 18anbi12d 743 . . . . . 6 ((𝑟 = 𝑇𝑖 = 𝐼) → (({𝑥, 𝑦} ⊆ { ∈ (ℕ0𝑚 𝑖) ∣ ( “ ℕ) ∈ Fin} ∧ ∃𝑧𝑖 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝑖 (𝑧𝑟𝑤 → (𝑥𝑤) = (𝑦𝑤)))) ↔ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤))))))
2019opabbidv 4648 . . . . 5 ((𝑟 = 𝑇𝑖 = 𝐼) → {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ { ∈ (ℕ0𝑚 𝑖) ∣ ( “ ℕ) ∈ Fin} ∧ ∃𝑧𝑖 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝑖 (𝑧𝑟𝑤 → (𝑥𝑤) = (𝑦𝑤))))} = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤))))})
21 df-ltbag 19180 . . . . 5 <bag = (𝑟 ∈ V, 𝑖 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ { ∈ (ℕ0𝑚 𝑖) ∣ ( “ ℕ) ∈ Fin} ∧ ∃𝑧𝑖 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝑖 (𝑧𝑟𝑤 → (𝑥𝑤) = (𝑦𝑤))))})
22 vex 3176 . . . . . . . . 9 𝑥 ∈ V
23 vex 3176 . . . . . . . . 9 𝑦 ∈ V
2422, 23prss 4291 . . . . . . . 8 ((𝑥𝐷𝑦𝐷) ↔ {𝑥, 𝑦} ⊆ 𝐷)
2524anbi1i 727 . . . . . . 7 (((𝑥𝐷𝑦𝐷) ∧ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))) ↔ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))))
2625opabbii 4649 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐷𝑦𝐷) ∧ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤))))} = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤))))}
27 ovex 6577 . . . . . . . . 9 (ℕ0𝑚 𝐼) ∈ V
2810, 27rabex2 4742 . . . . . . . 8 𝐷 ∈ V
2928, 28xpex 6860 . . . . . . 7 (𝐷 × 𝐷) ∈ V
30 opabssxp 5116 . . . . . . 7 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐷𝑦𝐷) ∧ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤))))} ⊆ (𝐷 × 𝐷)
3129, 30ssexi 4731 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐷𝑦𝐷) ∧ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤))))} ∈ V
3226, 31eqeltrri 2685 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤))))} ∈ V
3320, 21, 32ovmpt2a 6689 . . . 4 ((𝑇 ∈ V ∧ 𝐼 ∈ V) → (𝑇 <bag 𝐼) = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤))))})
344, 5, 33syl2an 493 . . 3 ((𝑇𝑊𝐼𝑉) → (𝑇 <bag 𝐼) = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤))))})
352, 3, 34syl2anc 691 . 2 (𝜑 → (𝑇 <bag 𝐼) = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤))))})
361, 35syl5eq 2656 1 (𝜑𝐶 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤))))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897  {crab 2900  Vcvv 3173  wss 3540  {cpr 4127   class class class wbr 4583  {copab 4642   × cxp 5036  ccnv 5037  cima 5041  cfv 5804  (class class class)co 6549  𝑚 cmap 7744  Fincfn 7841   < clt 9953  cn 10897  0cn0 11169   <bag cltb 19175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-ltbag 19180
This theorem is referenced by:  ltbwe  19293
  Copyright terms: Public domain W3C validator