Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lssvs0or Structured version   Visualization version   GIF version

Theorem lssvs0or 18931
 Description: If a scalar product belongs to a subspace, either the scalar component is zero or the vector component also belongs to the subspace. (Contributed by NM, 5-Apr-2015.)
Hypotheses
Ref Expression
lssvs0or.v 𝑉 = (Base‘𝑊)
lssvs0or.t · = ( ·𝑠𝑊)
lssvs0or.f 𝐹 = (Scalar‘𝑊)
lssvs0or.k 𝐾 = (Base‘𝐹)
lssvs0or.o 0 = (0g𝐹)
lssvs0or.s 𝑆 = (LSubSp‘𝑊)
lssvs0or.w (𝜑𝑊 ∈ LVec)
lssvs0or.u (𝜑𝑈𝑆)
lssvs0or.x (𝜑𝑋𝑉)
lssvs0or.a (𝜑𝐴𝐾)
Assertion
Ref Expression
lssvs0or (𝜑 → ((𝐴 · 𝑋) ∈ 𝑈 ↔ (𝐴 = 0𝑋𝑈)))

Proof of Theorem lssvs0or
StepHypRef Expression
1 lssvs0or.w . . . . . . . . . . . 12 (𝜑𝑊 ∈ LVec)
2 lssvs0or.f . . . . . . . . . . . . 13 𝐹 = (Scalar‘𝑊)
32lvecdrng 18926 . . . . . . . . . . . 12 (𝑊 ∈ LVec → 𝐹 ∈ DivRing)
41, 3syl 17 . . . . . . . . . . 11 (𝜑𝐹 ∈ DivRing)
54ad2antrr 758 . . . . . . . . . 10 (((𝜑 ∧ (𝐴 · 𝑋) ∈ 𝑈) ∧ 𝐴0 ) → 𝐹 ∈ DivRing)
6 lssvs0or.a . . . . . . . . . . 11 (𝜑𝐴𝐾)
76ad2antrr 758 . . . . . . . . . 10 (((𝜑 ∧ (𝐴 · 𝑋) ∈ 𝑈) ∧ 𝐴0 ) → 𝐴𝐾)
8 simpr 476 . . . . . . . . . 10 (((𝜑 ∧ (𝐴 · 𝑋) ∈ 𝑈) ∧ 𝐴0 ) → 𝐴0 )
9 lssvs0or.k . . . . . . . . . . 11 𝐾 = (Base‘𝐹)
10 lssvs0or.o . . . . . . . . . . 11 0 = (0g𝐹)
11 eqid 2610 . . . . . . . . . . 11 (.r𝐹) = (.r𝐹)
12 eqid 2610 . . . . . . . . . . 11 (1r𝐹) = (1r𝐹)
13 eqid 2610 . . . . . . . . . . 11 (invr𝐹) = (invr𝐹)
149, 10, 11, 12, 13drnginvrl 18589 . . . . . . . . . 10 ((𝐹 ∈ DivRing ∧ 𝐴𝐾𝐴0 ) → (((invr𝐹)‘𝐴)(.r𝐹)𝐴) = (1r𝐹))
155, 7, 8, 14syl3anc 1318 . . . . . . . . 9 (((𝜑 ∧ (𝐴 · 𝑋) ∈ 𝑈) ∧ 𝐴0 ) → (((invr𝐹)‘𝐴)(.r𝐹)𝐴) = (1r𝐹))
1615oveq1d 6564 . . . . . . . 8 (((𝜑 ∧ (𝐴 · 𝑋) ∈ 𝑈) ∧ 𝐴0 ) → ((((invr𝐹)‘𝐴)(.r𝐹)𝐴) · 𝑋) = ((1r𝐹) · 𝑋))
17 lveclmod 18927 . . . . . . . . . . 11 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
181, 17syl 17 . . . . . . . . . 10 (𝜑𝑊 ∈ LMod)
1918ad2antrr 758 . . . . . . . . 9 (((𝜑 ∧ (𝐴 · 𝑋) ∈ 𝑈) ∧ 𝐴0 ) → 𝑊 ∈ LMod)
209, 10, 13drnginvrcl 18587 . . . . . . . . . 10 ((𝐹 ∈ DivRing ∧ 𝐴𝐾𝐴0 ) → ((invr𝐹)‘𝐴) ∈ 𝐾)
215, 7, 8, 20syl3anc 1318 . . . . . . . . 9 (((𝜑 ∧ (𝐴 · 𝑋) ∈ 𝑈) ∧ 𝐴0 ) → ((invr𝐹)‘𝐴) ∈ 𝐾)
22 lssvs0or.x . . . . . . . . . 10 (𝜑𝑋𝑉)
2322ad2antrr 758 . . . . . . . . 9 (((𝜑 ∧ (𝐴 · 𝑋) ∈ 𝑈) ∧ 𝐴0 ) → 𝑋𝑉)
24 lssvs0or.v . . . . . . . . . 10 𝑉 = (Base‘𝑊)
25 lssvs0or.t . . . . . . . . . 10 · = ( ·𝑠𝑊)
2624, 2, 25, 9, 11lmodvsass 18711 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ (((invr𝐹)‘𝐴) ∈ 𝐾𝐴𝐾𝑋𝑉)) → ((((invr𝐹)‘𝐴)(.r𝐹)𝐴) · 𝑋) = (((invr𝐹)‘𝐴) · (𝐴 · 𝑋)))
2719, 21, 7, 23, 26syl13anc 1320 . . . . . . . 8 (((𝜑 ∧ (𝐴 · 𝑋) ∈ 𝑈) ∧ 𝐴0 ) → ((((invr𝐹)‘𝐴)(.r𝐹)𝐴) · 𝑋) = (((invr𝐹)‘𝐴) · (𝐴 · 𝑋)))
2824, 2, 25, 12lmodvs1 18714 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((1r𝐹) · 𝑋) = 𝑋)
2919, 23, 28syl2anc 691 . . . . . . . 8 (((𝜑 ∧ (𝐴 · 𝑋) ∈ 𝑈) ∧ 𝐴0 ) → ((1r𝐹) · 𝑋) = 𝑋)
3016, 27, 293eqtr3rd 2653 . . . . . . 7 (((𝜑 ∧ (𝐴 · 𝑋) ∈ 𝑈) ∧ 𝐴0 ) → 𝑋 = (((invr𝐹)‘𝐴) · (𝐴 · 𝑋)))
31 lssvs0or.u . . . . . . . . 9 (𝜑𝑈𝑆)
3231ad2antrr 758 . . . . . . . 8 (((𝜑 ∧ (𝐴 · 𝑋) ∈ 𝑈) ∧ 𝐴0 ) → 𝑈𝑆)
33 simplr 788 . . . . . . . 8 (((𝜑 ∧ (𝐴 · 𝑋) ∈ 𝑈) ∧ 𝐴0 ) → (𝐴 · 𝑋) ∈ 𝑈)
34 lssvs0or.s . . . . . . . . 9 𝑆 = (LSubSp‘𝑊)
352, 25, 9, 34lssvscl 18776 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (((invr𝐹)‘𝐴) ∈ 𝐾 ∧ (𝐴 · 𝑋) ∈ 𝑈)) → (((invr𝐹)‘𝐴) · (𝐴 · 𝑋)) ∈ 𝑈)
3619, 32, 21, 33, 35syl22anc 1319 . . . . . . 7 (((𝜑 ∧ (𝐴 · 𝑋) ∈ 𝑈) ∧ 𝐴0 ) → (((invr𝐹)‘𝐴) · (𝐴 · 𝑋)) ∈ 𝑈)
3730, 36eqeltrd 2688 . . . . . 6 (((𝜑 ∧ (𝐴 · 𝑋) ∈ 𝑈) ∧ 𝐴0 ) → 𝑋𝑈)
3837ex 449 . . . . 5 ((𝜑 ∧ (𝐴 · 𝑋) ∈ 𝑈) → (𝐴0𝑋𝑈))
3938necon1bd 2800 . . . 4 ((𝜑 ∧ (𝐴 · 𝑋) ∈ 𝑈) → (¬ 𝑋𝑈𝐴 = 0 ))
4039orrd 392 . . 3 ((𝜑 ∧ (𝐴 · 𝑋) ∈ 𝑈) → (𝑋𝑈𝐴 = 0 ))
4140orcomd 402 . 2 ((𝜑 ∧ (𝐴 · 𝑋) ∈ 𝑈) → (𝐴 = 0𝑋𝑈))
42 oveq1 6556 . . . . 5 (𝐴 = 0 → (𝐴 · 𝑋) = ( 0 · 𝑋))
4342adantl 481 . . . 4 ((𝜑𝐴 = 0 ) → (𝐴 · 𝑋) = ( 0 · 𝑋))
44 eqid 2610 . . . . . . . 8 (0g𝑊) = (0g𝑊)
4524, 2, 25, 10, 44lmod0vs 18719 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ( 0 · 𝑋) = (0g𝑊))
4618, 22, 45syl2anc 691 . . . . . 6 (𝜑 → ( 0 · 𝑋) = (0g𝑊))
4744, 34lss0cl 18768 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (0g𝑊) ∈ 𝑈)
4818, 31, 47syl2anc 691 . . . . . 6 (𝜑 → (0g𝑊) ∈ 𝑈)
4946, 48eqeltrd 2688 . . . . 5 (𝜑 → ( 0 · 𝑋) ∈ 𝑈)
5049adantr 480 . . . 4 ((𝜑𝐴 = 0 ) → ( 0 · 𝑋) ∈ 𝑈)
5143, 50eqeltrd 2688 . . 3 ((𝜑𝐴 = 0 ) → (𝐴 · 𝑋) ∈ 𝑈)
5218adantr 480 . . . 4 ((𝜑𝑋𝑈) → 𝑊 ∈ LMod)
5331adantr 480 . . . 4 ((𝜑𝑋𝑈) → 𝑈𝑆)
546adantr 480 . . . 4 ((𝜑𝑋𝑈) → 𝐴𝐾)
55 simpr 476 . . . 4 ((𝜑𝑋𝑈) → 𝑋𝑈)
562, 25, 9, 34lssvscl 18776 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝐴𝐾𝑋𝑈)) → (𝐴 · 𝑋) ∈ 𝑈)
5752, 53, 54, 55, 56syl22anc 1319 . . 3 ((𝜑𝑋𝑈) → (𝐴 · 𝑋) ∈ 𝑈)
5851, 57jaodan 822 . 2 ((𝜑 ∧ (𝐴 = 0𝑋𝑈)) → (𝐴 · 𝑋) ∈ 𝑈)
5941, 58impbida 873 1 (𝜑 → ((𝐴 · 𝑋) ∈ 𝑈 ↔ (𝐴 = 0𝑋𝑈)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∨ wo 382   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ‘cfv 5804  (class class class)co 6549  Basecbs 15695  .rcmulr 15769  Scalarcsca 15771   ·𝑠 cvsca 15772  0gc0g 15923  1rcur 18324  invrcinvr 18494  DivRingcdr 18570  LModclmod 18686  LSubSpclss 18753  LVecclvec 18923 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mgp 18313  df-ur 18325  df-ring 18372  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-drng 18572  df-lmod 18688  df-lss 18754  df-lvec 18924 This theorem is referenced by:  lspdisj  18946
 Copyright terms: Public domain W3C validator