MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lss1d Structured version   Visualization version   GIF version

Theorem lss1d 18784
Description: One-dimensional subspace (or zero-dimensional if 𝑋 is the zero vector). (Contributed by NM, 14-Jan-2014.) (Proof shortened by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lss1d.v 𝑉 = (Base‘𝑊)
lss1d.f 𝐹 = (Scalar‘𝑊)
lss1d.t · = ( ·𝑠𝑊)
lss1d.k 𝐾 = (Base‘𝐹)
lss1d.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
lss1d ((𝑊 ∈ LMod ∧ 𝑋𝑉) → {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ∈ 𝑆)
Distinct variable groups:   𝑣,𝑘,𝐾   · ,𝑘,𝑣   𝑘,𝑉,𝑣   𝑘,𝐹   𝑘,𝑊,𝑣   𝑘,𝑋,𝑣
Allowed substitution hints:   𝑆(𝑣,𝑘)   𝐹(𝑣)

Proof of Theorem lss1d
Dummy variables 𝑎 𝑏 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lss1d.f . . 3 𝐹 = (Scalar‘𝑊)
21a1i 11 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝐹 = (Scalar‘𝑊))
3 lss1d.k . . 3 𝐾 = (Base‘𝐹)
43a1i 11 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝐾 = (Base‘𝐹))
5 lss1d.v . . 3 𝑉 = (Base‘𝑊)
65a1i 11 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑉 = (Base‘𝑊))
7 eqidd 2611 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (+g𝑊) = (+g𝑊))
8 lss1d.t . . 3 · = ( ·𝑠𝑊)
98a1i 11 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → · = ( ·𝑠𝑊))
10 lss1d.s . . 3 𝑆 = (LSubSp‘𝑊)
1110a1i 11 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑆 = (LSubSp‘𝑊))
125, 1, 8, 3lmodvscl 18703 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑘𝐾𝑋𝑉) → (𝑘 · 𝑋) ∈ 𝑉)
13123expa 1257 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑘𝐾) ∧ 𝑋𝑉) → (𝑘 · 𝑋) ∈ 𝑉)
1413an32s 842 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ 𝑘𝐾) → (𝑘 · 𝑋) ∈ 𝑉)
15 eleq1a 2683 . . . . 5 ((𝑘 · 𝑋) ∈ 𝑉 → (𝑣 = (𝑘 · 𝑋) → 𝑣𝑉))
1614, 15syl 17 . . . 4 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ 𝑘𝐾) → (𝑣 = (𝑘 · 𝑋) → 𝑣𝑉))
1716rexlimdva 3013 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (∃𝑘𝐾 𝑣 = (𝑘 · 𝑋) → 𝑣𝑉))
1817abssdv 3639 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ⊆ 𝑉)
19 eqid 2610 . . . . 5 (0g𝐹) = (0g𝐹)
201, 3, 19lmod0cl 18712 . . . 4 (𝑊 ∈ LMod → (0g𝐹) ∈ 𝐾)
2120adantr 480 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (0g𝐹) ∈ 𝐾)
22 nfcv 2751 . . . 4 𝑘(0g𝐹)
23 nfre1 2988 . . . . . 6 𝑘𝑘𝐾 𝑣 = (𝑘 · 𝑋)
2423nfab 2755 . . . . 5 𝑘{𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)}
25 nfcv 2751 . . . . 5 𝑘
2624, 25nfne 2882 . . . 4 𝑘{𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ≠ ∅
27 biidd 251 . . . 4 (𝑘 = (0g𝐹) → ({𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ≠ ∅ ↔ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ≠ ∅))
28 ovex 6577 . . . . . 6 (𝑘 · 𝑋) ∈ V
2928elabrex 6405 . . . . 5 (𝑘𝐾 → (𝑘 · 𝑋) ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)})
30 ne0i 3880 . . . . 5 ((𝑘 · 𝑋) ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} → {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ≠ ∅)
3129, 30syl 17 . . . 4 (𝑘𝐾 → {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ≠ ∅)
3222, 26, 27, 31vtoclgaf 3244 . . 3 ((0g𝐹) ∈ 𝐾 → {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ≠ ∅)
3321, 32syl 17 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ≠ ∅)
34 vex 3176 . . . . . . . . . . 11 𝑎 ∈ V
35 eqeq1 2614 . . . . . . . . . . . 12 (𝑣 = 𝑎 → (𝑣 = (𝑘 · 𝑋) ↔ 𝑎 = (𝑘 · 𝑋)))
3635rexbidv 3034 . . . . . . . . . . 11 (𝑣 = 𝑎 → (∃𝑘𝐾 𝑣 = (𝑘 · 𝑋) ↔ ∃𝑘𝐾 𝑎 = (𝑘 · 𝑋)))
3734, 36elab 3319 . . . . . . . . . 10 (𝑎 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ↔ ∃𝑘𝐾 𝑎 = (𝑘 · 𝑋))
38 oveq1 6556 . . . . . . . . . . . 12 (𝑘 = 𝑦 → (𝑘 · 𝑋) = (𝑦 · 𝑋))
3938eqeq2d 2620 . . . . . . . . . . 11 (𝑘 = 𝑦 → (𝑎 = (𝑘 · 𝑋) ↔ 𝑎 = (𝑦 · 𝑋)))
4039cbvrexv 3148 . . . . . . . . . 10 (∃𝑘𝐾 𝑎 = (𝑘 · 𝑋) ↔ ∃𝑦𝐾 𝑎 = (𝑦 · 𝑋))
4137, 40bitri 263 . . . . . . . . 9 (𝑎 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ↔ ∃𝑦𝐾 𝑎 = (𝑦 · 𝑋))
42 vex 3176 . . . . . . . . . . 11 𝑏 ∈ V
43 eqeq1 2614 . . . . . . . . . . . 12 (𝑣 = 𝑏 → (𝑣 = (𝑘 · 𝑋) ↔ 𝑏 = (𝑘 · 𝑋)))
4443rexbidv 3034 . . . . . . . . . . 11 (𝑣 = 𝑏 → (∃𝑘𝐾 𝑣 = (𝑘 · 𝑋) ↔ ∃𝑘𝐾 𝑏 = (𝑘 · 𝑋)))
4542, 44elab 3319 . . . . . . . . . 10 (𝑏 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ↔ ∃𝑘𝐾 𝑏 = (𝑘 · 𝑋))
46 oveq1 6556 . . . . . . . . . . . 12 (𝑘 = 𝑧 → (𝑘 · 𝑋) = (𝑧 · 𝑋))
4746eqeq2d 2620 . . . . . . . . . . 11 (𝑘 = 𝑧 → (𝑏 = (𝑘 · 𝑋) ↔ 𝑏 = (𝑧 · 𝑋)))
4847cbvrexv 3148 . . . . . . . . . 10 (∃𝑘𝐾 𝑏 = (𝑘 · 𝑋) ↔ ∃𝑧𝐾 𝑏 = (𝑧 · 𝑋))
4945, 48bitri 263 . . . . . . . . 9 (𝑏 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ↔ ∃𝑧𝐾 𝑏 = (𝑧 · 𝑋))
5041, 49anbi12i 729 . . . . . . . 8 ((𝑎 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ∧ 𝑏 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)}) ↔ (∃𝑦𝐾 𝑎 = (𝑦 · 𝑋) ∧ ∃𝑧𝐾 𝑏 = (𝑧 · 𝑋)))
51 reeanv 3086 . . . . . . . 8 (∃𝑦𝐾𝑧𝐾 (𝑎 = (𝑦 · 𝑋) ∧ 𝑏 = (𝑧 · 𝑋)) ↔ (∃𝑦𝐾 𝑎 = (𝑦 · 𝑋) ∧ ∃𝑧𝐾 𝑏 = (𝑧 · 𝑋)))
5250, 51bitr4i 266 . . . . . . 7 ((𝑎 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ∧ 𝑏 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)}) ↔ ∃𝑦𝐾𝑧𝐾 (𝑎 = (𝑦 · 𝑋) ∧ 𝑏 = (𝑧 · 𝑋)))
53 simpll 786 . . . . . . . . . . . . 13 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ ((𝑦𝐾𝑧𝐾) ∧ 𝑥𝐾)) → 𝑊 ∈ LMod)
54 simprr 792 . . . . . . . . . . . . . 14 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ ((𝑦𝐾𝑧𝐾) ∧ 𝑥𝐾)) → 𝑥𝐾)
55 simprll 798 . . . . . . . . . . . . . 14 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ ((𝑦𝐾𝑧𝐾) ∧ 𝑥𝐾)) → 𝑦𝐾)
56 eqid 2610 . . . . . . . . . . . . . . 15 (.r𝐹) = (.r𝐹)
571, 3, 56lmodmcl 18698 . . . . . . . . . . . . . 14 ((𝑊 ∈ LMod ∧ 𝑥𝐾𝑦𝐾) → (𝑥(.r𝐹)𝑦) ∈ 𝐾)
5853, 54, 55, 57syl3anc 1318 . . . . . . . . . . . . 13 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ ((𝑦𝐾𝑧𝐾) ∧ 𝑥𝐾)) → (𝑥(.r𝐹)𝑦) ∈ 𝐾)
59 simprlr 799 . . . . . . . . . . . . 13 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ ((𝑦𝐾𝑧𝐾) ∧ 𝑥𝐾)) → 𝑧𝐾)
60 eqid 2610 . . . . . . . . . . . . . 14 (+g𝐹) = (+g𝐹)
611, 3, 60lmodacl 18697 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ (𝑥(.r𝐹)𝑦) ∈ 𝐾𝑧𝐾) → ((𝑥(.r𝐹)𝑦)(+g𝐹)𝑧) ∈ 𝐾)
6253, 58, 59, 61syl3anc 1318 . . . . . . . . . . . 12 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ ((𝑦𝐾𝑧𝐾) ∧ 𝑥𝐾)) → ((𝑥(.r𝐹)𝑦)(+g𝐹)𝑧) ∈ 𝐾)
63 simplr 788 . . . . . . . . . . . . . 14 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ ((𝑦𝐾𝑧𝐾) ∧ 𝑥𝐾)) → 𝑋𝑉)
64 eqid 2610 . . . . . . . . . . . . . . 15 (+g𝑊) = (+g𝑊)
655, 64, 1, 8, 3, 60lmodvsdir 18710 . . . . . . . . . . . . . 14 ((𝑊 ∈ LMod ∧ ((𝑥(.r𝐹)𝑦) ∈ 𝐾𝑧𝐾𝑋𝑉)) → (((𝑥(.r𝐹)𝑦)(+g𝐹)𝑧) · 𝑋) = (((𝑥(.r𝐹)𝑦) · 𝑋)(+g𝑊)(𝑧 · 𝑋)))
6653, 58, 59, 63, 65syl13anc 1320 . . . . . . . . . . . . 13 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ ((𝑦𝐾𝑧𝐾) ∧ 𝑥𝐾)) → (((𝑥(.r𝐹)𝑦)(+g𝐹)𝑧) · 𝑋) = (((𝑥(.r𝐹)𝑦) · 𝑋)(+g𝑊)(𝑧 · 𝑋)))
675, 1, 8, 3, 56lmodvsass 18711 . . . . . . . . . . . . . . 15 ((𝑊 ∈ LMod ∧ (𝑥𝐾𝑦𝐾𝑋𝑉)) → ((𝑥(.r𝐹)𝑦) · 𝑋) = (𝑥 · (𝑦 · 𝑋)))
6853, 54, 55, 63, 67syl13anc 1320 . . . . . . . . . . . . . 14 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ ((𝑦𝐾𝑧𝐾) ∧ 𝑥𝐾)) → ((𝑥(.r𝐹)𝑦) · 𝑋) = (𝑥 · (𝑦 · 𝑋)))
6968oveq1d 6564 . . . . . . . . . . . . 13 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ ((𝑦𝐾𝑧𝐾) ∧ 𝑥𝐾)) → (((𝑥(.r𝐹)𝑦) · 𝑋)(+g𝑊)(𝑧 · 𝑋)) = ((𝑥 · (𝑦 · 𝑋))(+g𝑊)(𝑧 · 𝑋)))
7066, 69eqtr2d 2645 . . . . . . . . . . . 12 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ ((𝑦𝐾𝑧𝐾) ∧ 𝑥𝐾)) → ((𝑥 · (𝑦 · 𝑋))(+g𝑊)(𝑧 · 𝑋)) = (((𝑥(.r𝐹)𝑦)(+g𝐹)𝑧) · 𝑋))
71 oveq1 6556 . . . . . . . . . . . . . 14 (𝑘 = ((𝑥(.r𝐹)𝑦)(+g𝐹)𝑧) → (𝑘 · 𝑋) = (((𝑥(.r𝐹)𝑦)(+g𝐹)𝑧) · 𝑋))
7271eqeq2d 2620 . . . . . . . . . . . . 13 (𝑘 = ((𝑥(.r𝐹)𝑦)(+g𝐹)𝑧) → (((𝑥 · (𝑦 · 𝑋))(+g𝑊)(𝑧 · 𝑋)) = (𝑘 · 𝑋) ↔ ((𝑥 · (𝑦 · 𝑋))(+g𝑊)(𝑧 · 𝑋)) = (((𝑥(.r𝐹)𝑦)(+g𝐹)𝑧) · 𝑋)))
7372rspcev 3282 . . . . . . . . . . . 12 ((((𝑥(.r𝐹)𝑦)(+g𝐹)𝑧) ∈ 𝐾 ∧ ((𝑥 · (𝑦 · 𝑋))(+g𝑊)(𝑧 · 𝑋)) = (((𝑥(.r𝐹)𝑦)(+g𝐹)𝑧) · 𝑋)) → ∃𝑘𝐾 ((𝑥 · (𝑦 · 𝑋))(+g𝑊)(𝑧 · 𝑋)) = (𝑘 · 𝑋))
7462, 70, 73syl2anc 691 . . . . . . . . . . 11 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ ((𝑦𝐾𝑧𝐾) ∧ 𝑥𝐾)) → ∃𝑘𝐾 ((𝑥 · (𝑦 · 𝑋))(+g𝑊)(𝑧 · 𝑋)) = (𝑘 · 𝑋))
75 oveq2 6557 . . . . . . . . . . . . . 14 (𝑎 = (𝑦 · 𝑋) → (𝑥 · 𝑎) = (𝑥 · (𝑦 · 𝑋)))
76 oveq12 6558 . . . . . . . . . . . . . 14 (((𝑥 · 𝑎) = (𝑥 · (𝑦 · 𝑋)) ∧ 𝑏 = (𝑧 · 𝑋)) → ((𝑥 · 𝑎)(+g𝑊)𝑏) = ((𝑥 · (𝑦 · 𝑋))(+g𝑊)(𝑧 · 𝑋)))
7775, 76sylan 487 . . . . . . . . . . . . 13 ((𝑎 = (𝑦 · 𝑋) ∧ 𝑏 = (𝑧 · 𝑋)) → ((𝑥 · 𝑎)(+g𝑊)𝑏) = ((𝑥 · (𝑦 · 𝑋))(+g𝑊)(𝑧 · 𝑋)))
7877eqeq1d 2612 . . . . . . . . . . . 12 ((𝑎 = (𝑦 · 𝑋) ∧ 𝑏 = (𝑧 · 𝑋)) → (((𝑥 · 𝑎)(+g𝑊)𝑏) = (𝑘 · 𝑋) ↔ ((𝑥 · (𝑦 · 𝑋))(+g𝑊)(𝑧 · 𝑋)) = (𝑘 · 𝑋)))
7978rexbidv 3034 . . . . . . . . . . 11 ((𝑎 = (𝑦 · 𝑋) ∧ 𝑏 = (𝑧 · 𝑋)) → (∃𝑘𝐾 ((𝑥 · 𝑎)(+g𝑊)𝑏) = (𝑘 · 𝑋) ↔ ∃𝑘𝐾 ((𝑥 · (𝑦 · 𝑋))(+g𝑊)(𝑧 · 𝑋)) = (𝑘 · 𝑋)))
8074, 79syl5ibrcom 236 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ ((𝑦𝐾𝑧𝐾) ∧ 𝑥𝐾)) → ((𝑎 = (𝑦 · 𝑋) ∧ 𝑏 = (𝑧 · 𝑋)) → ∃𝑘𝐾 ((𝑥 · 𝑎)(+g𝑊)𝑏) = (𝑘 · 𝑋)))
8180expr 641 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ (𝑦𝐾𝑧𝐾)) → (𝑥𝐾 → ((𝑎 = (𝑦 · 𝑋) ∧ 𝑏 = (𝑧 · 𝑋)) → ∃𝑘𝐾 ((𝑥 · 𝑎)(+g𝑊)𝑏) = (𝑘 · 𝑋))))
8281com23 84 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ (𝑦𝐾𝑧𝐾)) → ((𝑎 = (𝑦 · 𝑋) ∧ 𝑏 = (𝑧 · 𝑋)) → (𝑥𝐾 → ∃𝑘𝐾 ((𝑥 · 𝑎)(+g𝑊)𝑏) = (𝑘 · 𝑋))))
8382rexlimdvva 3020 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (∃𝑦𝐾𝑧𝐾 (𝑎 = (𝑦 · 𝑋) ∧ 𝑏 = (𝑧 · 𝑋)) → (𝑥𝐾 → ∃𝑘𝐾 ((𝑥 · 𝑎)(+g𝑊)𝑏) = (𝑘 · 𝑋))))
8452, 83syl5bi 231 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((𝑎 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ∧ 𝑏 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)}) → (𝑥𝐾 → ∃𝑘𝐾 ((𝑥 · 𝑎)(+g𝑊)𝑏) = (𝑘 · 𝑋))))
8584expcomd 453 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑏 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} → (𝑎 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} → (𝑥𝐾 → ∃𝑘𝐾 ((𝑥 · 𝑎)(+g𝑊)𝑏) = (𝑘 · 𝑋)))))
8685com24 93 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑥𝐾 → (𝑎 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} → (𝑏 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} → ∃𝑘𝐾 ((𝑥 · 𝑎)(+g𝑊)𝑏) = (𝑘 · 𝑋)))))
87863imp2 1274 . . 3 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ (𝑥𝐾𝑎 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ∧ 𝑏 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)})) → ∃𝑘𝐾 ((𝑥 · 𝑎)(+g𝑊)𝑏) = (𝑘 · 𝑋))
88 ovex 6577 . . . 4 ((𝑥 · 𝑎)(+g𝑊)𝑏) ∈ V
89 eqeq1 2614 . . . . 5 (𝑣 = ((𝑥 · 𝑎)(+g𝑊)𝑏) → (𝑣 = (𝑘 · 𝑋) ↔ ((𝑥 · 𝑎)(+g𝑊)𝑏) = (𝑘 · 𝑋)))
9089rexbidv 3034 . . . 4 (𝑣 = ((𝑥 · 𝑎)(+g𝑊)𝑏) → (∃𝑘𝐾 𝑣 = (𝑘 · 𝑋) ↔ ∃𝑘𝐾 ((𝑥 · 𝑎)(+g𝑊)𝑏) = (𝑘 · 𝑋)))
9188, 90elab 3319 . . 3 (((𝑥 · 𝑎)(+g𝑊)𝑏) ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ↔ ∃𝑘𝐾 ((𝑥 · 𝑎)(+g𝑊)𝑏) = (𝑘 · 𝑋))
9287, 91sylibr 223 . 2 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ (𝑥𝐾𝑎 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ∧ 𝑏 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)})) → ((𝑥 · 𝑎)(+g𝑊)𝑏) ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)})
932, 4, 6, 7, 9, 11, 18, 33, 92islssd 18757 1 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  {cab 2596  wne 2780  wrex 2897  c0 3874  cfv 5804  (class class class)co 6549  Basecbs 15695  +gcplusg 15768  .rcmulr 15769  Scalarcsca 15771   ·𝑠 cvsca 15772  0gc0g 15923  LModclmod 18686  LSubSpclss 18753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-plusg 15781  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-mgp 18313  df-ring 18372  df-lmod 18688  df-lss 18754
This theorem is referenced by:  lspsn  18823
  Copyright terms: Public domain W3C validator