Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lspsneq0 | Structured version Visualization version GIF version |
Description: Span of the singleton is the zero subspace iff the vector is zero. (Contributed by NM, 27-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lspsneq0.v | ⊢ 𝑉 = (Base‘𝑊) |
lspsneq0.z | ⊢ 0 = (0g‘𝑊) |
lspsneq0.n | ⊢ 𝑁 = (LSpan‘𝑊) |
Ref | Expression |
---|---|
lspsneq0 | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((𝑁‘{𝑋}) = { 0 } ↔ 𝑋 = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspsneq0.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
2 | lspsneq0.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑊) | |
3 | 1, 2 | lspsnid 18814 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ (𝑁‘{𝑋})) |
4 | eleq2 2677 | . . . 4 ⊢ ((𝑁‘{𝑋}) = { 0 } → (𝑋 ∈ (𝑁‘{𝑋}) ↔ 𝑋 ∈ { 0 })) | |
5 | 3, 4 | syl5ibcom 234 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((𝑁‘{𝑋}) = { 0 } → 𝑋 ∈ { 0 })) |
6 | elsni 4142 | . . 3 ⊢ (𝑋 ∈ { 0 } → 𝑋 = 0 ) | |
7 | 5, 6 | syl6 34 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((𝑁‘{𝑋}) = { 0 } → 𝑋 = 0 )) |
8 | lspsneq0.z | . . . . 5 ⊢ 0 = (0g‘𝑊) | |
9 | 8, 2 | lspsn0 18829 | . . . 4 ⊢ (𝑊 ∈ LMod → (𝑁‘{ 0 }) = { 0 }) |
10 | 9 | adantr 480 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{ 0 }) = { 0 }) |
11 | sneq 4135 | . . . . 5 ⊢ (𝑋 = 0 → {𝑋} = { 0 }) | |
12 | 11 | fveq2d 6107 | . . . 4 ⊢ (𝑋 = 0 → (𝑁‘{𝑋}) = (𝑁‘{ 0 })) |
13 | 12 | eqeq1d 2612 | . . 3 ⊢ (𝑋 = 0 → ((𝑁‘{𝑋}) = { 0 } ↔ (𝑁‘{ 0 }) = { 0 })) |
14 | 10, 13 | syl5ibrcom 236 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑋 = 0 → (𝑁‘{𝑋}) = { 0 })) |
15 | 7, 14 | impbid 201 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((𝑁‘{𝑋}) = { 0 } ↔ 𝑋 = 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 = wceq 1475 ∈ wcel 1977 {csn 4125 ‘cfv 5804 Basecbs 15695 0gc0g 15923 LModclmod 18686 LSpanclspn 18792 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-2 10956 df-ndx 15698 df-slot 15699 df-base 15700 df-sets 15701 df-plusg 15781 df-0g 15925 df-mgm 17065 df-sgrp 17107 df-mnd 17118 df-grp 17248 df-mgp 18313 df-ring 18372 df-lmod 18688 df-lss 18754 df-lsp 18793 |
This theorem is referenced by: lspsneq0b 18834 lsatn0 33304 lsator0sp 33306 lsat0cv 33338 dih0vbN 35589 dihlspsnat 35640 mapdn0 35976 mapdindp1 36027 hdmapeq0 36154 |
Copyright terms: Public domain | W3C validator |