MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsnat Structured version   Visualization version   GIF version

Theorem lspsnat 18966
Description: There is no subspace strictly between the zero subspace and the span of a vector (i.e. a 1-dimensional subspace is an atom). (h1datomi 27824 analog.) (Contributed by NM, 20-Apr-2014.) (Proof shortened by Mario Carneiro, 22-Jun-2014.)
Hypotheses
Ref Expression
lspsnat.v 𝑉 = (Base‘𝑊)
lspsnat.z 0 = (0g𝑊)
lspsnat.s 𝑆 = (LSubSp‘𝑊)
lspsnat.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
lspsnat (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ 𝑈 ⊆ (𝑁‘{𝑋})) → (𝑈 = (𝑁‘{𝑋}) ∨ 𝑈 = { 0 }))

Proof of Theorem lspsnat
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 n0 3890 . . . . . 6 ((𝑈 ∖ { 0 }) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝑈 ∖ { 0 }))
2 simprl 790 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → 𝑈 ⊆ (𝑁‘{𝑋}))
3 lspsnat.s . . . . . . . . . 10 𝑆 = (LSubSp‘𝑊)
4 lspsnat.n . . . . . . . . . 10 𝑁 = (LSpan‘𝑊)
5 simpl1 1057 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → 𝑊 ∈ LVec)
6 lveclmod 18927 . . . . . . . . . . 11 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
75, 6syl 17 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → 𝑊 ∈ LMod)
8 simpl2 1058 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → 𝑈𝑆)
9 simprr 792 . . . . . . . . . . . . 13 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → 𝑥 ∈ (𝑈 ∖ { 0 }))
109eldifad 3552 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → 𝑥𝑈)
113, 4, 7, 8, 10lspsnel5a 18817 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → (𝑁‘{𝑥}) ⊆ 𝑈)
12 0ss 3924 . . . . . . . . . . . . . 14 ∅ ⊆ 𝑉
1312a1i 11 . . . . . . . . . . . . 13 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → ∅ ⊆ 𝑉)
14 simpl3 1059 . . . . . . . . . . . . 13 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → 𝑋𝑉)
15 ssdif 3707 . . . . . . . . . . . . . . . 16 (𝑈 ⊆ (𝑁‘{𝑋}) → (𝑈 ∖ { 0 }) ⊆ ((𝑁‘{𝑋}) ∖ { 0 }))
1615ad2antrl 760 . . . . . . . . . . . . . . 15 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → (𝑈 ∖ { 0 }) ⊆ ((𝑁‘{𝑋}) ∖ { 0 }))
1716, 9sseldd 3569 . . . . . . . . . . . . . 14 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → 𝑥 ∈ ((𝑁‘{𝑋}) ∖ { 0 }))
18 uncom 3719 . . . . . . . . . . . . . . . . . 18 (∅ ∪ {𝑋}) = ({𝑋} ∪ ∅)
19 un0 3919 . . . . . . . . . . . . . . . . . 18 ({𝑋} ∪ ∅) = {𝑋}
2018, 19eqtri 2632 . . . . . . . . . . . . . . . . 17 (∅ ∪ {𝑋}) = {𝑋}
2120fveq2i 6106 . . . . . . . . . . . . . . . 16 (𝑁‘(∅ ∪ {𝑋})) = (𝑁‘{𝑋})
2221a1i 11 . . . . . . . . . . . . . . 15 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → (𝑁‘(∅ ∪ {𝑋})) = (𝑁‘{𝑋}))
23 lspsnat.z . . . . . . . . . . . . . . . . 17 0 = (0g𝑊)
2423, 4lsp0 18830 . . . . . . . . . . . . . . . 16 (𝑊 ∈ LMod → (𝑁‘∅) = { 0 })
257, 24syl 17 . . . . . . . . . . . . . . 15 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → (𝑁‘∅) = { 0 })
2622, 25difeq12d 3691 . . . . . . . . . . . . . 14 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → ((𝑁‘(∅ ∪ {𝑋})) ∖ (𝑁‘∅)) = ((𝑁‘{𝑋}) ∖ { 0 }))
2717, 26eleqtrrd 2691 . . . . . . . . . . . . 13 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → 𝑥 ∈ ((𝑁‘(∅ ∪ {𝑋})) ∖ (𝑁‘∅)))
28 lspsnat.v . . . . . . . . . . . . . 14 𝑉 = (Base‘𝑊)
2928, 3, 4lspsolv 18964 . . . . . . . . . . . . 13 ((𝑊 ∈ LVec ∧ (∅ ⊆ 𝑉𝑋𝑉𝑥 ∈ ((𝑁‘(∅ ∪ {𝑋})) ∖ (𝑁‘∅)))) → 𝑋 ∈ (𝑁‘(∅ ∪ {𝑥})))
305, 13, 14, 27, 29syl13anc 1320 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → 𝑋 ∈ (𝑁‘(∅ ∪ {𝑥})))
31 uncom 3719 . . . . . . . . . . . . . 14 (∅ ∪ {𝑥}) = ({𝑥} ∪ ∅)
32 un0 3919 . . . . . . . . . . . . . 14 ({𝑥} ∪ ∅) = {𝑥}
3331, 32eqtri 2632 . . . . . . . . . . . . 13 (∅ ∪ {𝑥}) = {𝑥}
3433fveq2i 6106 . . . . . . . . . . . 12 (𝑁‘(∅ ∪ {𝑥})) = (𝑁‘{𝑥})
3530, 34syl6eleq 2698 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → 𝑋 ∈ (𝑁‘{𝑥}))
3611, 35sseldd 3569 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → 𝑋𝑈)
373, 4, 7, 8, 36lspsnel5a 18817 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → (𝑁‘{𝑋}) ⊆ 𝑈)
382, 37eqssd 3585 . . . . . . . 8 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → 𝑈 = (𝑁‘{𝑋}))
3938expr 641 . . . . . . 7 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ 𝑈 ⊆ (𝑁‘{𝑋})) → (𝑥 ∈ (𝑈 ∖ { 0 }) → 𝑈 = (𝑁‘{𝑋})))
4039exlimdv 1848 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ 𝑈 ⊆ (𝑁‘{𝑋})) → (∃𝑥 𝑥 ∈ (𝑈 ∖ { 0 }) → 𝑈 = (𝑁‘{𝑋})))
411, 40syl5bi 231 . . . . 5 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ 𝑈 ⊆ (𝑁‘{𝑋})) → ((𝑈 ∖ { 0 }) ≠ ∅ → 𝑈 = (𝑁‘{𝑋})))
4241necon1bd 2800 . . . 4 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ 𝑈 ⊆ (𝑁‘{𝑋})) → (¬ 𝑈 = (𝑁‘{𝑋}) → (𝑈 ∖ { 0 }) = ∅))
43 ssdif0 3896 . . . 4 (𝑈 ⊆ { 0 } ↔ (𝑈 ∖ { 0 }) = ∅)
4442, 43syl6ibr 241 . . 3 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ 𝑈 ⊆ (𝑁‘{𝑋})) → (¬ 𝑈 = (𝑁‘{𝑋}) → 𝑈 ⊆ { 0 }))
45 simpl1 1057 . . . . 5 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ 𝑈 ⊆ (𝑁‘{𝑋})) → 𝑊 ∈ LVec)
4645, 6syl 17 . . . 4 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ 𝑈 ⊆ (𝑁‘{𝑋})) → 𝑊 ∈ LMod)
47 simpl2 1058 . . . 4 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ 𝑈 ⊆ (𝑁‘{𝑋})) → 𝑈𝑆)
4823, 3lssle0 18771 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑈 ⊆ { 0 } ↔ 𝑈 = { 0 }))
4946, 47, 48syl2anc 691 . . 3 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ 𝑈 ⊆ (𝑁‘{𝑋})) → (𝑈 ⊆ { 0 } ↔ 𝑈 = { 0 }))
5044, 49sylibd 228 . 2 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ 𝑈 ⊆ (𝑁‘{𝑋})) → (¬ 𝑈 = (𝑁‘{𝑋}) → 𝑈 = { 0 }))
5150orrd 392 1 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ 𝑈 ⊆ (𝑁‘{𝑋})) → (𝑈 = (𝑁‘{𝑋}) ∨ 𝑈 = { 0 }))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wex 1695  wcel 1977  wne 2780  cdif 3537  cun 3538  wss 3540  c0 3874  {csn 4125  cfv 5804  Basecbs 15695  0gc0g 15923  LModclmod 18686  LSubSpclss 18753  LSpanclspn 18792  LVecclvec 18923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-sbg 17250  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-drng 18572  df-lmod 18688  df-lss 18754  df-lsp 18793  df-lvec 18924
This theorem is referenced by:  lspsncv0  18967  lsatcmp  33308  dihlspsnssN  35639  dihlspsnat  35640
  Copyright terms: Public domain W3C validator