Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lspprss | Structured version Visualization version GIF version |
Description: The span of a pair of vectors in a subspace belongs to the subspace. (Contributed by NM, 12-Jan-2015.) |
Ref | Expression |
---|---|
lspprss.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lspprss.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lspprss.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lspprss.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
lspprss.x | ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
lspprss.y | ⊢ (𝜑 → 𝑌 ∈ 𝑈) |
Ref | Expression |
---|---|
lspprss | ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspprss.w | . 2 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
2 | lspprss.u | . 2 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
3 | lspprss.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑈) | |
4 | lspprss.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑈) | |
5 | 3, 4 | jca 553 | . . 3 ⊢ (𝜑 → (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) |
6 | prssg 4290 | . . . 4 ⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) ↔ {𝑋, 𝑌} ⊆ 𝑈)) | |
7 | 5, 6 | syl 17 | . . 3 ⊢ (𝜑 → ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) ↔ {𝑋, 𝑌} ⊆ 𝑈)) |
8 | 5, 7 | mpbid 221 | . 2 ⊢ (𝜑 → {𝑋, 𝑌} ⊆ 𝑈) |
9 | lspprss.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
10 | lspprss.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
11 | 9, 10 | lspssp 18809 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ {𝑋, 𝑌} ⊆ 𝑈) → (𝑁‘{𝑋, 𝑌}) ⊆ 𝑈) |
12 | 1, 2, 8, 11 | syl3anc 1318 | 1 ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ⊆ wss 3540 {cpr 4127 ‘cfv 5804 LModclmod 18686 LSubSpclss 18753 LSpanclspn 18792 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-0g 15925 df-mgm 17065 df-sgrp 17107 df-mnd 17118 df-grp 17248 df-lmod 18688 df-lss 18754 df-lsp 18793 |
This theorem is referenced by: lsppratlem2 18969 dvh3dim2 35755 dvh3dim3N 35756 lclkrlem2n 35827 |
Copyright terms: Public domain | W3C validator |