Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsppreli Structured version   Visualization version   GIF version

Theorem lsppreli 18911
 Description: A vector expressed as a sum belongs to the span of its components. (Contributed by NM, 9-Apr-2015.)
Hypotheses
Ref Expression
lsppreli.v 𝑉 = (Base‘𝑊)
lsppreli.p + = (+g𝑊)
lsppreli.t · = ( ·𝑠𝑊)
lsppreli.f 𝐹 = (Scalar‘𝑊)
lsppreli.k 𝐾 = (Base‘𝐹)
lsppreli.n 𝑁 = (LSpan‘𝑊)
lsppreli.w (𝜑𝑊 ∈ LMod)
lsppreli.a (𝜑𝐴𝐾)
lsppreli.b (𝜑𝐵𝐾)
lsppreli.x (𝜑𝑋𝑉)
lsppreli.y (𝜑𝑌𝑉)
Assertion
Ref Expression
lsppreli (𝜑 → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) ∈ (𝑁‘{𝑋, 𝑌}))

Proof of Theorem lsppreli
StepHypRef Expression
1 lsppreli.w . . . 4 (𝜑𝑊 ∈ LMod)
2 lsppreli.x . . . 4 (𝜑𝑋𝑉)
3 lsppreli.v . . . . 5 𝑉 = (Base‘𝑊)
4 lsppreli.n . . . . 5 𝑁 = (LSpan‘𝑊)
53, 4lspsnsubg 18801 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊))
61, 2, 5syl2anc 691 . . 3 (𝜑 → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊))
7 lsppreli.y . . . 4 (𝜑𝑌𝑉)
83, 4lspsnsubg 18801 . . . 4 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊))
91, 7, 8syl2anc 691 . . 3 (𝜑 → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊))
10 lsppreli.t . . . 4 · = ( ·𝑠𝑊)
11 lsppreli.f . . . 4 𝐹 = (Scalar‘𝑊)
12 lsppreli.k . . . 4 𝐾 = (Base‘𝐹)
13 lsppreli.a . . . 4 (𝜑𝐴𝐾)
143, 10, 11, 12, 4, 1, 13, 2lspsneli 18822 . . 3 (𝜑 → (𝐴 · 𝑋) ∈ (𝑁‘{𝑋}))
15 lsppreli.b . . . 4 (𝜑𝐵𝐾)
163, 10, 11, 12, 4, 1, 15, 7lspsneli 18822 . . 3 (𝜑 → (𝐵 · 𝑌) ∈ (𝑁‘{𝑌}))
17 lsppreli.p . . . 4 + = (+g𝑊)
18 eqid 2610 . . . 4 (LSSum‘𝑊) = (LSSum‘𝑊)
1917, 18lsmelvali 17888 . . 3 ((((𝑁‘{𝑋}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊)) ∧ ((𝐴 · 𝑋) ∈ (𝑁‘{𝑋}) ∧ (𝐵 · 𝑌) ∈ (𝑁‘{𝑌}))) → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) ∈ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
206, 9, 14, 16, 19syl22anc 1319 . 2 (𝜑 → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) ∈ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
213, 4, 18, 1, 2, 7lsmpr 18910 . 2 (𝜑 → (𝑁‘{𝑋, 𝑌}) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
2220, 21eleqtrrd 2691 1 (𝜑 → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) ∈ (𝑁‘{𝑋, 𝑌}))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1475   ∈ wcel 1977  {csn 4125  {cpr 4127  ‘cfv 5804  (class class class)co 6549  Basecbs 15695  +gcplusg 15768  Scalarcsca 15771   ·𝑠 cvsca 15772  SubGrpcsubg 17411  LSSumclsm 17872  LModclmod 18686  LSpanclspn 18792 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-subg 17414  df-cntz 17573  df-lsm 17874  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-lmod 18688  df-lss 18754  df-lsp 18793 This theorem is referenced by:  lspexch  18950  baerlem3lem1  36014  baerlem5alem1  36015  baerlem5blem1  36016
 Copyright terms: Public domain W3C validator