Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lspdisjb | Structured version Visualization version GIF version |
Description: A nonzero vector is not in a subspace iff its span is disjoint with the subspace. (Contributed by NM, 23-Apr-2015.) |
Ref | Expression |
---|---|
lspdisjb.v | ⊢ 𝑉 = (Base‘𝑊) |
lspdisjb.o | ⊢ 0 = (0g‘𝑊) |
lspdisjb.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lspdisjb.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lspdisjb.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lspdisjb.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
lspdisjb.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
Ref | Expression |
---|---|
lspdisjb | ⊢ (𝜑 → (¬ 𝑋 ∈ 𝑈 ↔ ((𝑁‘{𝑋}) ∩ 𝑈) = { 0 })) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspdisjb.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
2 | lspdisjb.o | . . 3 ⊢ 0 = (0g‘𝑊) | |
3 | lspdisjb.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
4 | lspdisjb.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
5 | lspdisjb.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
6 | 5 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 ∈ 𝑈) → 𝑊 ∈ LVec) |
7 | lspdisjb.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
8 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 ∈ 𝑈) → 𝑈 ∈ 𝑆) |
9 | lspdisjb.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
10 | 9 | eldifad 3552 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
11 | 10 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 ∈ 𝑈) → 𝑋 ∈ 𝑉) |
12 | simpr 476 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 ∈ 𝑈) → ¬ 𝑋 ∈ 𝑈) | |
13 | 1, 2, 3, 4, 6, 8, 11, 12 | lspdisj 18946 | . 2 ⊢ ((𝜑 ∧ ¬ 𝑋 ∈ 𝑈) → ((𝑁‘{𝑋}) ∩ 𝑈) = { 0 }) |
14 | eldifsni 4261 | . . . . 5 ⊢ (𝑋 ∈ (𝑉 ∖ { 0 }) → 𝑋 ≠ 0 ) | |
15 | 9, 14 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑋 ≠ 0 ) |
16 | 15 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ((𝑁‘{𝑋}) ∩ 𝑈) = { 0 }) → 𝑋 ≠ 0 ) |
17 | lveclmod 18927 | . . . . . . 7 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
18 | 5, 17 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LMod) |
19 | 1, 3 | lspsnid 18814 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ (𝑁‘{𝑋})) |
20 | 18, 10, 19 | syl2anc 691 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (𝑁‘{𝑋})) |
21 | elin 3758 | . . . . . . 7 ⊢ (𝑋 ∈ ((𝑁‘{𝑋}) ∩ 𝑈) ↔ (𝑋 ∈ (𝑁‘{𝑋}) ∧ 𝑋 ∈ 𝑈)) | |
22 | eleq2 2677 | . . . . . . . 8 ⊢ (((𝑁‘{𝑋}) ∩ 𝑈) = { 0 } → (𝑋 ∈ ((𝑁‘{𝑋}) ∩ 𝑈) ↔ 𝑋 ∈ { 0 })) | |
23 | elsni 4142 | . . . . . . . 8 ⊢ (𝑋 ∈ { 0 } → 𝑋 = 0 ) | |
24 | 22, 23 | syl6bi 242 | . . . . . . 7 ⊢ (((𝑁‘{𝑋}) ∩ 𝑈) = { 0 } → (𝑋 ∈ ((𝑁‘{𝑋}) ∩ 𝑈) → 𝑋 = 0 )) |
25 | 21, 24 | syl5bir 232 | . . . . . 6 ⊢ (((𝑁‘{𝑋}) ∩ 𝑈) = { 0 } → ((𝑋 ∈ (𝑁‘{𝑋}) ∧ 𝑋 ∈ 𝑈) → 𝑋 = 0 )) |
26 | 25 | expd 451 | . . . . 5 ⊢ (((𝑁‘{𝑋}) ∩ 𝑈) = { 0 } → (𝑋 ∈ (𝑁‘{𝑋}) → (𝑋 ∈ 𝑈 → 𝑋 = 0 ))) |
27 | 20, 26 | mpan9 485 | . . . 4 ⊢ ((𝜑 ∧ ((𝑁‘{𝑋}) ∩ 𝑈) = { 0 }) → (𝑋 ∈ 𝑈 → 𝑋 = 0 )) |
28 | 27 | necon3ad 2795 | . . 3 ⊢ ((𝜑 ∧ ((𝑁‘{𝑋}) ∩ 𝑈) = { 0 }) → (𝑋 ≠ 0 → ¬ 𝑋 ∈ 𝑈)) |
29 | 16, 28 | mpd 15 | . 2 ⊢ ((𝜑 ∧ ((𝑁‘{𝑋}) ∩ 𝑈) = { 0 }) → ¬ 𝑋 ∈ 𝑈) |
30 | 13, 29 | impbida 873 | 1 ⊢ (𝜑 → (¬ 𝑋 ∈ 𝑈 ↔ ((𝑁‘{𝑋}) ∩ 𝑈) = { 0 })) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 195 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ≠ wne 2780 ∖ cdif 3537 ∩ cin 3539 {csn 4125 ‘cfv 5804 Basecbs 15695 0gc0g 15923 LModclmod 18686 LSubSpclss 18753 LSpanclspn 18792 LVecclvec 18923 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-tpos 7239 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-2 10956 df-3 10957 df-ndx 15698 df-slot 15699 df-base 15700 df-sets 15701 df-ress 15702 df-plusg 15781 df-mulr 15782 df-0g 15925 df-mgm 17065 df-sgrp 17107 df-mnd 17118 df-grp 17248 df-minusg 17249 df-sbg 17250 df-mgp 18313 df-ur 18325 df-ring 18372 df-oppr 18446 df-dvdsr 18464 df-unit 18465 df-invr 18495 df-drng 18572 df-lmod 18688 df-lss 18754 df-lsp 18793 df-lvec 18924 |
This theorem is referenced by: mapdh6b0N 36043 hdmap1l6b0N 36118 |
Copyright terms: Public domain | W3C validator |