MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspabs3 Structured version   Visualization version   GIF version

Theorem lspabs3 18942
Description: Absorption law for span of vector sum. (Contributed by NM, 30-Apr-2015.)
Hypotheses
Ref Expression
lspabs2.v 𝑉 = (Base‘𝑊)
lspabs2.p + = (+g𝑊)
lspabs2.o 0 = (0g𝑊)
lspabs2.n 𝑁 = (LSpan‘𝑊)
lspabs2.w (𝜑𝑊 ∈ LVec)
lspabs2.x (𝜑𝑋𝑉)
lspabs3.y (𝜑𝑌𝑉)
lspabs3.xy (𝜑 → (𝑋 + 𝑌) ≠ 0 )
lspabs3.e (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))
Assertion
Ref Expression
lspabs3 (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{(𝑋 + 𝑌)}))

Proof of Theorem lspabs3
StepHypRef Expression
1 eqid 2610 . . . . 5 (LSubSp‘𝑊) = (LSubSp‘𝑊)
2 lspabs2.n . . . . 5 𝑁 = (LSpan‘𝑊)
3 lspabs2.w . . . . . 6 (𝜑𝑊 ∈ LVec)
4 lveclmod 18927 . . . . . 6 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
53, 4syl 17 . . . . 5 (𝜑𝑊 ∈ LMod)
6 lspabs2.x . . . . . . 7 (𝜑𝑋𝑉)
7 lspabs2.v . . . . . . . 8 𝑉 = (Base‘𝑊)
87, 1, 2lspsncl 18798 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
95, 6, 8syl2anc 691 . . . . . 6 (𝜑 → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
10 lspabs3.y . . . . . . 7 (𝜑𝑌𝑉)
117, 1, 2lspsncl 18798 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
125, 10, 11syl2anc 691 . . . . . 6 (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
13 eqid 2610 . . . . . . 7 (LSSum‘𝑊) = (LSSum‘𝑊)
141, 13lsmcl 18904 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊) ∧ (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊)) → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) ∈ (LSubSp‘𝑊))
155, 9, 12, 14syl3anc 1318 . . . . 5 (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) ∈ (LSubSp‘𝑊))
167, 2lspsnsubg 18801 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊))
175, 6, 16syl2anc 691 . . . . . 6 (𝜑 → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊))
18 lspabs3.e . . . . . . 7 (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))
1918, 17eqeltrrd 2689 . . . . . 6 (𝜑 → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊))
207, 2lspsnid 18814 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑋 ∈ (𝑁‘{𝑋}))
215, 6, 20syl2anc 691 . . . . . 6 (𝜑𝑋 ∈ (𝑁‘{𝑋}))
227, 2lspsnid 18814 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → 𝑌 ∈ (𝑁‘{𝑌}))
235, 10, 22syl2anc 691 . . . . . 6 (𝜑𝑌 ∈ (𝑁‘{𝑌}))
24 lspabs2.p . . . . . . 7 + = (+g𝑊)
2524, 13lsmelvali 17888 . . . . . 6 ((((𝑁‘{𝑋}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊)) ∧ (𝑋 ∈ (𝑁‘{𝑋}) ∧ 𝑌 ∈ (𝑁‘{𝑌}))) → (𝑋 + 𝑌) ∈ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
2617, 19, 21, 23, 25syl22anc 1319 . . . . 5 (𝜑 → (𝑋 + 𝑌) ∈ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
271, 2, 5, 15, 26lspsnel5a 18817 . . . 4 (𝜑 → (𝑁‘{(𝑋 + 𝑌)}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
2818oveq2d 6565 . . . . 5 (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑋})) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
2913lsmidm 17900 . . . . . 6 ((𝑁‘{𝑋}) ∈ (SubGrp‘𝑊) → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑋})) = (𝑁‘{𝑋}))
3017, 29syl 17 . . . . 5 (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑋})) = (𝑁‘{𝑋}))
3128, 30eqtr3d 2646 . . . 4 (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) = (𝑁‘{𝑋}))
3227, 31sseqtrd 3604 . . 3 (𝜑 → (𝑁‘{(𝑋 + 𝑌)}) ⊆ (𝑁‘{𝑋}))
33 lspabs2.o . . . 4 0 = (0g𝑊)
347, 24lmodvacl 18700 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 + 𝑌) ∈ 𝑉)
355, 6, 10, 34syl3anc 1318 . . . . 5 (𝜑 → (𝑋 + 𝑌) ∈ 𝑉)
36 lspabs3.xy . . . . 5 (𝜑 → (𝑋 + 𝑌) ≠ 0 )
37 eldifsn 4260 . . . . 5 ((𝑋 + 𝑌) ∈ (𝑉 ∖ { 0 }) ↔ ((𝑋 + 𝑌) ∈ 𝑉 ∧ (𝑋 + 𝑌) ≠ 0 ))
3835, 36, 37sylanbrc 695 . . . 4 (𝜑 → (𝑋 + 𝑌) ∈ (𝑉 ∖ { 0 }))
397, 33, 2, 3, 38, 6lspsncmp 18937 . . 3 (𝜑 → ((𝑁‘{(𝑋 + 𝑌)}) ⊆ (𝑁‘{𝑋}) ↔ (𝑁‘{(𝑋 + 𝑌)}) = (𝑁‘{𝑋})))
4032, 39mpbid 221 . 2 (𝜑 → (𝑁‘{(𝑋 + 𝑌)}) = (𝑁‘{𝑋}))
4140eqcomd 2616 1 (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{(𝑋 + 𝑌)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977  wne 2780  cdif 3537  wss 3540  {csn 4125  cfv 5804  (class class class)co 6549  Basecbs 15695  +gcplusg 15768  0gc0g 15923  SubGrpcsubg 17411  LSSumclsm 17872  LModclmod 18686  LSubSpclss 18753  LSpanclspn 18792  LVecclvec 18923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-subg 17414  df-cntz 17573  df-lsm 17874  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-drng 18572  df-lmod 18688  df-lss 18754  df-lsp 18793  df-lvec 18924
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator