Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmpropd Structured version   Visualization version   GIF version

Theorem lsmpropd 17913
 Description: If two structures have the same components (properties), they have the same subspace structure. (Contributed by Mario Carneiro, 29-Jun-2015.)
Hypotheses
Ref Expression
lsmpropd.b1 (𝜑𝐵 = (Base‘𝐾))
lsmpropd.b2 (𝜑𝐵 = (Base‘𝐿))
lsmpropd.p ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
lsmpropd.v1 (𝜑𝐾 ∈ V)
lsmpropd.v2 (𝜑𝐿 ∈ V)
Assertion
Ref Expression
lsmpropd (𝜑 → (LSSum‘𝐾) = (LSSum‘𝐿))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦

Proof of Theorem lsmpropd
Dummy variables 𝑢 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp11 1084 . . . . . . 7 (((𝜑𝑡 ∈ 𝒫 𝐵𝑢 ∈ 𝒫 𝐵) ∧ 𝑥𝑡𝑦𝑢) → 𝜑)
2 simp12 1085 . . . . . . . . 9 (((𝜑𝑡 ∈ 𝒫 𝐵𝑢 ∈ 𝒫 𝐵) ∧ 𝑥𝑡𝑦𝑢) → 𝑡 ∈ 𝒫 𝐵)
32elpwid 4118 . . . . . . . 8 (((𝜑𝑡 ∈ 𝒫 𝐵𝑢 ∈ 𝒫 𝐵) ∧ 𝑥𝑡𝑦𝑢) → 𝑡𝐵)
4 simp2 1055 . . . . . . . 8 (((𝜑𝑡 ∈ 𝒫 𝐵𝑢 ∈ 𝒫 𝐵) ∧ 𝑥𝑡𝑦𝑢) → 𝑥𝑡)
53, 4sseldd 3569 . . . . . . 7 (((𝜑𝑡 ∈ 𝒫 𝐵𝑢 ∈ 𝒫 𝐵) ∧ 𝑥𝑡𝑦𝑢) → 𝑥𝐵)
6 simp13 1086 . . . . . . . . 9 (((𝜑𝑡 ∈ 𝒫 𝐵𝑢 ∈ 𝒫 𝐵) ∧ 𝑥𝑡𝑦𝑢) → 𝑢 ∈ 𝒫 𝐵)
76elpwid 4118 . . . . . . . 8 (((𝜑𝑡 ∈ 𝒫 𝐵𝑢 ∈ 𝒫 𝐵) ∧ 𝑥𝑡𝑦𝑢) → 𝑢𝐵)
8 simp3 1056 . . . . . . . 8 (((𝜑𝑡 ∈ 𝒫 𝐵𝑢 ∈ 𝒫 𝐵) ∧ 𝑥𝑡𝑦𝑢) → 𝑦𝑢)
97, 8sseldd 3569 . . . . . . 7 (((𝜑𝑡 ∈ 𝒫 𝐵𝑢 ∈ 𝒫 𝐵) ∧ 𝑥𝑡𝑦𝑢) → 𝑦𝐵)
10 lsmpropd.p . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
111, 5, 9, 10syl12anc 1316 . . . . . 6 (((𝜑𝑡 ∈ 𝒫 𝐵𝑢 ∈ 𝒫 𝐵) ∧ 𝑥𝑡𝑦𝑢) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
1211mpt2eq3dva 6617 . . . . 5 ((𝜑𝑡 ∈ 𝒫 𝐵𝑢 ∈ 𝒫 𝐵) → (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐾)𝑦)) = (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐿)𝑦)))
1312rneqd 5274 . . . 4 ((𝜑𝑡 ∈ 𝒫 𝐵𝑢 ∈ 𝒫 𝐵) → ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐾)𝑦)) = ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐿)𝑦)))
1413mpt2eq3dva 6617 . . 3 (𝜑 → (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐾)𝑦))) = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐿)𝑦))))
15 lsmpropd.b1 . . . . 5 (𝜑𝐵 = (Base‘𝐾))
1615pweqd 4113 . . . 4 (𝜑 → 𝒫 𝐵 = 𝒫 (Base‘𝐾))
17 mpt2eq12 6613 . . . 4 ((𝒫 𝐵 = 𝒫 (Base‘𝐾) ∧ 𝒫 𝐵 = 𝒫 (Base‘𝐾)) → (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐾)𝑦))) = (𝑡 ∈ 𝒫 (Base‘𝐾), 𝑢 ∈ 𝒫 (Base‘𝐾) ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐾)𝑦))))
1816, 16, 17syl2anc 691 . . 3 (𝜑 → (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐾)𝑦))) = (𝑡 ∈ 𝒫 (Base‘𝐾), 𝑢 ∈ 𝒫 (Base‘𝐾) ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐾)𝑦))))
19 lsmpropd.b2 . . . . 5 (𝜑𝐵 = (Base‘𝐿))
2019pweqd 4113 . . . 4 (𝜑 → 𝒫 𝐵 = 𝒫 (Base‘𝐿))
21 mpt2eq12 6613 . . . 4 ((𝒫 𝐵 = 𝒫 (Base‘𝐿) ∧ 𝒫 𝐵 = 𝒫 (Base‘𝐿)) → (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐿)𝑦))) = (𝑡 ∈ 𝒫 (Base‘𝐿), 𝑢 ∈ 𝒫 (Base‘𝐿) ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐿)𝑦))))
2220, 20, 21syl2anc 691 . . 3 (𝜑 → (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐿)𝑦))) = (𝑡 ∈ 𝒫 (Base‘𝐿), 𝑢 ∈ 𝒫 (Base‘𝐿) ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐿)𝑦))))
2314, 18, 223eqtr3d 2652 . 2 (𝜑 → (𝑡 ∈ 𝒫 (Base‘𝐾), 𝑢 ∈ 𝒫 (Base‘𝐾) ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐾)𝑦))) = (𝑡 ∈ 𝒫 (Base‘𝐿), 𝑢 ∈ 𝒫 (Base‘𝐿) ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐿)𝑦))))
24 lsmpropd.v1 . . 3 (𝜑𝐾 ∈ V)
25 eqid 2610 . . . 4 (Base‘𝐾) = (Base‘𝐾)
26 eqid 2610 . . . 4 (+g𝐾) = (+g𝐾)
27 eqid 2610 . . . 4 (LSSum‘𝐾) = (LSSum‘𝐾)
2825, 26, 27lsmfval 17876 . . 3 (𝐾 ∈ V → (LSSum‘𝐾) = (𝑡 ∈ 𝒫 (Base‘𝐾), 𝑢 ∈ 𝒫 (Base‘𝐾) ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐾)𝑦))))
2924, 28syl 17 . 2 (𝜑 → (LSSum‘𝐾) = (𝑡 ∈ 𝒫 (Base‘𝐾), 𝑢 ∈ 𝒫 (Base‘𝐾) ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐾)𝑦))))
30 lsmpropd.v2 . . 3 (𝜑𝐿 ∈ V)
31 eqid 2610 . . . 4 (Base‘𝐿) = (Base‘𝐿)
32 eqid 2610 . . . 4 (+g𝐿) = (+g𝐿)
33 eqid 2610 . . . 4 (LSSum‘𝐿) = (LSSum‘𝐿)
3431, 32, 33lsmfval 17876 . . 3 (𝐿 ∈ V → (LSSum‘𝐿) = (𝑡 ∈ 𝒫 (Base‘𝐿), 𝑢 ∈ 𝒫 (Base‘𝐿) ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐿)𝑦))))
3530, 34syl 17 . 2 (𝜑 → (LSSum‘𝐿) = (𝑡 ∈ 𝒫 (Base‘𝐿), 𝑢 ∈ 𝒫 (Base‘𝐿) ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐿)𝑦))))
3623, 29, 353eqtr4d 2654 1 (𝜑 → (LSSum‘𝐾) = (LSSum‘𝐿))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  Vcvv 3173  𝒫 cpw 4108  ran crn 5039  ‘cfv 5804  (class class class)co 6549   ↦ cmpt2 6551  Basecbs 15695  +gcplusg 15768  LSSumclsm 17872 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-lsm 17874 This theorem is referenced by:  hlhillsm  36266
 Copyright terms: Public domain W3C validator