MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmelvalm Structured version   Visualization version   GIF version

Theorem lsmelvalm 17889
Description: Subgroup sum membership analogue of lsmelval 17887 using vector subtraction. TODO: any way to shorten proof? (Contributed by NM, 16-Mar-2015.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
lsmelvalm.m = (-g𝐺)
lsmelvalm.p = (LSSum‘𝐺)
lsmelvalm.t (𝜑𝑇 ∈ (SubGrp‘𝐺))
lsmelvalm.u (𝜑𝑈 ∈ (SubGrp‘𝐺))
Assertion
Ref Expression
lsmelvalm (𝜑 → (𝑋 ∈ (𝑇 𝑈) ↔ ∃𝑦𝑇𝑧𝑈 𝑋 = (𝑦 𝑧)))
Distinct variable groups:   𝑦,𝑧,   𝑦,𝐺,𝑧   𝜑,𝑦,𝑧   𝑦,𝑇,𝑧   𝑦,𝑈,𝑧   𝑦,𝑋,𝑧
Allowed substitution hints:   (𝑦,𝑧)

Proof of Theorem lsmelvalm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 lsmelvalm.t . . 3 (𝜑𝑇 ∈ (SubGrp‘𝐺))
2 lsmelvalm.u . . 3 (𝜑𝑈 ∈ (SubGrp‘𝐺))
3 eqid 2610 . . . 4 (+g𝐺) = (+g𝐺)
4 lsmelvalm.p . . . 4 = (LSSum‘𝐺)
53, 4lsmelval 17887 . . 3 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑋 ∈ (𝑇 𝑈) ↔ ∃𝑦𝑇𝑥𝑈 𝑋 = (𝑦(+g𝐺)𝑥)))
61, 2, 5syl2anc 691 . 2 (𝜑 → (𝑋 ∈ (𝑇 𝑈) ↔ ∃𝑦𝑇𝑥𝑈 𝑋 = (𝑦(+g𝐺)𝑥)))
72adantr 480 . . . . . . . 8 ((𝜑𝑦𝑇) → 𝑈 ∈ (SubGrp‘𝐺))
8 eqid 2610 . . . . . . . . 9 (invg𝐺) = (invg𝐺)
98subginvcl 17426 . . . . . . . 8 ((𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑈) → ((invg𝐺)‘𝑥) ∈ 𝑈)
107, 9sylan 487 . . . . . . 7 (((𝜑𝑦𝑇) ∧ 𝑥𝑈) → ((invg𝐺)‘𝑥) ∈ 𝑈)
11 eqid 2610 . . . . . . . . 9 (Base‘𝐺) = (Base‘𝐺)
12 lsmelvalm.m . . . . . . . . 9 = (-g𝐺)
13 subgrcl 17422 . . . . . . . . . . 11 (𝑇 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
141, 13syl 17 . . . . . . . . . 10 (𝜑𝐺 ∈ Grp)
1514ad2antrr 758 . . . . . . . . 9 (((𝜑𝑦𝑇) ∧ 𝑥𝑈) → 𝐺 ∈ Grp)
1611subgss 17418 . . . . . . . . . . . 12 (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ⊆ (Base‘𝐺))
171, 16syl 17 . . . . . . . . . . 11 (𝜑𝑇 ⊆ (Base‘𝐺))
1817sselda 3568 . . . . . . . . . 10 ((𝜑𝑦𝑇) → 𝑦 ∈ (Base‘𝐺))
1918adantr 480 . . . . . . . . 9 (((𝜑𝑦𝑇) ∧ 𝑥𝑈) → 𝑦 ∈ (Base‘𝐺))
2011subgss 17418 . . . . . . . . . . 11 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺))
217, 20syl 17 . . . . . . . . . 10 ((𝜑𝑦𝑇) → 𝑈 ⊆ (Base‘𝐺))
2221sselda 3568 . . . . . . . . 9 (((𝜑𝑦𝑇) ∧ 𝑥𝑈) → 𝑥 ∈ (Base‘𝐺))
2311, 3, 12, 8, 15, 19, 22grpsubinv 17311 . . . . . . . 8 (((𝜑𝑦𝑇) ∧ 𝑥𝑈) → (𝑦 ((invg𝐺)‘𝑥)) = (𝑦(+g𝐺)𝑥))
2423eqcomd 2616 . . . . . . 7 (((𝜑𝑦𝑇) ∧ 𝑥𝑈) → (𝑦(+g𝐺)𝑥) = (𝑦 ((invg𝐺)‘𝑥)))
25 oveq2 6557 . . . . . . . . 9 (𝑧 = ((invg𝐺)‘𝑥) → (𝑦 𝑧) = (𝑦 ((invg𝐺)‘𝑥)))
2625eqeq2d 2620 . . . . . . . 8 (𝑧 = ((invg𝐺)‘𝑥) → ((𝑦(+g𝐺)𝑥) = (𝑦 𝑧) ↔ (𝑦(+g𝐺)𝑥) = (𝑦 ((invg𝐺)‘𝑥))))
2726rspcev 3282 . . . . . . 7 ((((invg𝐺)‘𝑥) ∈ 𝑈 ∧ (𝑦(+g𝐺)𝑥) = (𝑦 ((invg𝐺)‘𝑥))) → ∃𝑧𝑈 (𝑦(+g𝐺)𝑥) = (𝑦 𝑧))
2810, 24, 27syl2anc 691 . . . . . 6 (((𝜑𝑦𝑇) ∧ 𝑥𝑈) → ∃𝑧𝑈 (𝑦(+g𝐺)𝑥) = (𝑦 𝑧))
29 eqeq1 2614 . . . . . . 7 (𝑋 = (𝑦(+g𝐺)𝑥) → (𝑋 = (𝑦 𝑧) ↔ (𝑦(+g𝐺)𝑥) = (𝑦 𝑧)))
3029rexbidv 3034 . . . . . 6 (𝑋 = (𝑦(+g𝐺)𝑥) → (∃𝑧𝑈 𝑋 = (𝑦 𝑧) ↔ ∃𝑧𝑈 (𝑦(+g𝐺)𝑥) = (𝑦 𝑧)))
3128, 30syl5ibrcom 236 . . . . 5 (((𝜑𝑦𝑇) ∧ 𝑥𝑈) → (𝑋 = (𝑦(+g𝐺)𝑥) → ∃𝑧𝑈 𝑋 = (𝑦 𝑧)))
3231rexlimdva 3013 . . . 4 ((𝜑𝑦𝑇) → (∃𝑥𝑈 𝑋 = (𝑦(+g𝐺)𝑥) → ∃𝑧𝑈 𝑋 = (𝑦 𝑧)))
338subginvcl 17426 . . . . . . . 8 ((𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑧𝑈) → ((invg𝐺)‘𝑧) ∈ 𝑈)
347, 33sylan 487 . . . . . . 7 (((𝜑𝑦𝑇) ∧ 𝑧𝑈) → ((invg𝐺)‘𝑧) ∈ 𝑈)
3518adantr 480 . . . . . . . 8 (((𝜑𝑦𝑇) ∧ 𝑧𝑈) → 𝑦 ∈ (Base‘𝐺))
3621sselda 3568 . . . . . . . 8 (((𝜑𝑦𝑇) ∧ 𝑧𝑈) → 𝑧 ∈ (Base‘𝐺))
3711, 3, 8, 12grpsubval 17288 . . . . . . . 8 ((𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺)) → (𝑦 𝑧) = (𝑦(+g𝐺)((invg𝐺)‘𝑧)))
3835, 36, 37syl2anc 691 . . . . . . 7 (((𝜑𝑦𝑇) ∧ 𝑧𝑈) → (𝑦 𝑧) = (𝑦(+g𝐺)((invg𝐺)‘𝑧)))
39 oveq2 6557 . . . . . . . . 9 (𝑥 = ((invg𝐺)‘𝑧) → (𝑦(+g𝐺)𝑥) = (𝑦(+g𝐺)((invg𝐺)‘𝑧)))
4039eqeq2d 2620 . . . . . . . 8 (𝑥 = ((invg𝐺)‘𝑧) → ((𝑦 𝑧) = (𝑦(+g𝐺)𝑥) ↔ (𝑦 𝑧) = (𝑦(+g𝐺)((invg𝐺)‘𝑧))))
4140rspcev 3282 . . . . . . 7 ((((invg𝐺)‘𝑧) ∈ 𝑈 ∧ (𝑦 𝑧) = (𝑦(+g𝐺)((invg𝐺)‘𝑧))) → ∃𝑥𝑈 (𝑦 𝑧) = (𝑦(+g𝐺)𝑥))
4234, 38, 41syl2anc 691 . . . . . 6 (((𝜑𝑦𝑇) ∧ 𝑧𝑈) → ∃𝑥𝑈 (𝑦 𝑧) = (𝑦(+g𝐺)𝑥))
43 eqeq1 2614 . . . . . . 7 (𝑋 = (𝑦 𝑧) → (𝑋 = (𝑦(+g𝐺)𝑥) ↔ (𝑦 𝑧) = (𝑦(+g𝐺)𝑥)))
4443rexbidv 3034 . . . . . 6 (𝑋 = (𝑦 𝑧) → (∃𝑥𝑈 𝑋 = (𝑦(+g𝐺)𝑥) ↔ ∃𝑥𝑈 (𝑦 𝑧) = (𝑦(+g𝐺)𝑥)))
4542, 44syl5ibrcom 236 . . . . 5 (((𝜑𝑦𝑇) ∧ 𝑧𝑈) → (𝑋 = (𝑦 𝑧) → ∃𝑥𝑈 𝑋 = (𝑦(+g𝐺)𝑥)))
4645rexlimdva 3013 . . . 4 ((𝜑𝑦𝑇) → (∃𝑧𝑈 𝑋 = (𝑦 𝑧) → ∃𝑥𝑈 𝑋 = (𝑦(+g𝐺)𝑥)))
4732, 46impbid 201 . . 3 ((𝜑𝑦𝑇) → (∃𝑥𝑈 𝑋 = (𝑦(+g𝐺)𝑥) ↔ ∃𝑧𝑈 𝑋 = (𝑦 𝑧)))
4847rexbidva 3031 . 2 (𝜑 → (∃𝑦𝑇𝑥𝑈 𝑋 = (𝑦(+g𝐺)𝑥) ↔ ∃𝑦𝑇𝑧𝑈 𝑋 = (𝑦 𝑧)))
496, 48bitrd 267 1 (𝜑 → (𝑋 ∈ (𝑇 𝑈) ↔ ∃𝑦𝑇𝑧𝑈 𝑋 = (𝑦 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wrex 2897  wss 3540  cfv 5804  (class class class)co 6549  Basecbs 15695  +gcplusg 15768  Grpcgrp 17245  invgcminusg 17246  -gcsg 17247  SubGrpcsubg 17411  LSSumclsm 17872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-sbg 17250  df-subg 17414  df-lsm 17874
This theorem is referenced by:  lsmelvalmi  17890  pgpfac1lem2  18297  pgpfac1lem3  18299  pgpfac1lem4  18300  mapdpglem3  35982
  Copyright terms: Public domain W3C validator