Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lsmdisj2r | Structured version Visualization version GIF version |
Description: Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 22-Apr-2016.) |
Ref | Expression |
---|---|
lsmcntz.p | ⊢ ⊕ = (LSSum‘𝐺) |
lsmcntz.s | ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) |
lsmcntz.t | ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) |
lsmcntz.u | ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) |
lsmdisj.o | ⊢ 0 = (0g‘𝐺) |
lsmdisjr.i | ⊢ (𝜑 → (𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 }) |
lsmdisj2r.i | ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) |
Ref | Expression |
---|---|
lsmdisj2r | ⊢ (𝜑 → ((𝑆 ⊕ 𝑈) ∩ 𝑇) = { 0 }) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2610 | . . . . 5 ⊢ (oppg‘𝐺) = (oppg‘𝐺) | |
2 | lsmcntz.p | . . . . 5 ⊢ ⊕ = (LSSum‘𝐺) | |
3 | 1, 2 | oppglsm 17880 | . . . 4 ⊢ (𝑈(LSSum‘(oppg‘𝐺))𝑆) = (𝑆 ⊕ 𝑈) |
4 | 3 | ineq2i 3773 | . . 3 ⊢ (𝑇 ∩ (𝑈(LSSum‘(oppg‘𝐺))𝑆)) = (𝑇 ∩ (𝑆 ⊕ 𝑈)) |
5 | incom 3767 | . . 3 ⊢ (𝑇 ∩ (𝑆 ⊕ 𝑈)) = ((𝑆 ⊕ 𝑈) ∩ 𝑇) | |
6 | 4, 5 | eqtri 2632 | . 2 ⊢ (𝑇 ∩ (𝑈(LSSum‘(oppg‘𝐺))𝑆)) = ((𝑆 ⊕ 𝑈) ∩ 𝑇) |
7 | eqid 2610 | . . 3 ⊢ (LSSum‘(oppg‘𝐺)) = (LSSum‘(oppg‘𝐺)) | |
8 | lsmcntz.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) | |
9 | 1 | oppgsubg 17616 | . . . 4 ⊢ (SubGrp‘𝐺) = (SubGrp‘(oppg‘𝐺)) |
10 | 8, 9 | syl6eleq 2698 | . . 3 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘(oppg‘𝐺))) |
11 | lsmcntz.t | . . . 4 ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) | |
12 | 11, 9 | syl6eleq 2698 | . . 3 ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘(oppg‘𝐺))) |
13 | lsmcntz.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) | |
14 | 13, 9 | syl6eleq 2698 | . . 3 ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘(oppg‘𝐺))) |
15 | lsmdisj.o | . . . 4 ⊢ 0 = (0g‘𝐺) | |
16 | 1, 15 | oppgid 17609 | . . 3 ⊢ 0 = (0g‘(oppg‘𝐺)) |
17 | 1, 2 | oppglsm 17880 | . . . . . 6 ⊢ (𝑈(LSSum‘(oppg‘𝐺))𝑇) = (𝑇 ⊕ 𝑈) |
18 | 17 | ineq1i 3772 | . . . . 5 ⊢ ((𝑈(LSSum‘(oppg‘𝐺))𝑇) ∩ 𝑆) = ((𝑇 ⊕ 𝑈) ∩ 𝑆) |
19 | incom 3767 | . . . . 5 ⊢ ((𝑇 ⊕ 𝑈) ∩ 𝑆) = (𝑆 ∩ (𝑇 ⊕ 𝑈)) | |
20 | 18, 19 | eqtri 2632 | . . . 4 ⊢ ((𝑈(LSSum‘(oppg‘𝐺))𝑇) ∩ 𝑆) = (𝑆 ∩ (𝑇 ⊕ 𝑈)) |
21 | lsmdisjr.i | . . . 4 ⊢ (𝜑 → (𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 }) | |
22 | 20, 21 | syl5eq 2656 | . . 3 ⊢ (𝜑 → ((𝑈(LSSum‘(oppg‘𝐺))𝑇) ∩ 𝑆) = { 0 }) |
23 | incom 3767 | . . . 4 ⊢ (𝑇 ∩ 𝑈) = (𝑈 ∩ 𝑇) | |
24 | lsmdisj2r.i | . . . 4 ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) | |
25 | 23, 24 | syl5eqr 2658 | . . 3 ⊢ (𝜑 → (𝑈 ∩ 𝑇) = { 0 }) |
26 | 7, 10, 12, 14, 16, 22, 25 | lsmdisj2 17918 | . 2 ⊢ (𝜑 → (𝑇 ∩ (𝑈(LSSum‘(oppg‘𝐺))𝑆)) = { 0 }) |
27 | 6, 26 | syl5eqr 2658 | 1 ⊢ (𝜑 → ((𝑆 ⊕ 𝑈) ∩ 𝑇) = { 0 }) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1475 ∈ wcel 1977 ∩ cin 3539 {csn 4125 ‘cfv 5804 (class class class)co 6549 0gc0g 15923 SubGrpcsubg 17411 oppgcoppg 17598 LSSumclsm 17872 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-tpos 7239 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-2 10956 df-ndx 15698 df-slot 15699 df-base 15700 df-sets 15701 df-ress 15702 df-plusg 15781 df-0g 15925 df-mgm 17065 df-sgrp 17107 df-mnd 17118 df-submnd 17159 df-grp 17248 df-minusg 17249 df-subg 17414 df-oppg 17599 df-lsm 17874 |
This theorem is referenced by: lsmdisj3r 17922 lsmdisj2b 17924 |
Copyright terms: Public domain | W3C validator |