Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpset2N Structured version   Visualization version   GIF version

Theorem lshpset2N 33424
Description: The set of all hyperplanes of a left module or left vector space equals the set of all kernels of nonzero functionals. (Contributed by NM, 17-Jul-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
lshpset2.v 𝑉 = (Base‘𝑊)
lshpset2.d 𝐷 = (Scalar‘𝑊)
lshpset2.z 0 = (0g𝐷)
lshpset2.h 𝐻 = (LSHyp‘𝑊)
lshpset2.f 𝐹 = (LFnl‘𝑊)
lshpset2.k 𝐾 = (LKer‘𝑊)
Assertion
Ref Expression
lshpset2N (𝑊 ∈ LVec → 𝐻 = {𝑠 ∣ ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))})
Distinct variable groups:   𝑔,𝐹   𝑔,𝑠,𝐻   𝑔,𝐾   𝑔,𝑉   𝑔,𝑊,𝑠
Allowed substitution hints:   𝐷(𝑔,𝑠)   𝐹(𝑠)   𝐾(𝑠)   𝑉(𝑠)   0 (𝑔,𝑠)

Proof of Theorem lshpset2N
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 lshpset2.h . . . . . 6 𝐻 = (LSHyp‘𝑊)
2 lshpset2.f . . . . . 6 𝐹 = (LFnl‘𝑊)
3 lshpset2.k . . . . . 6 𝐾 = (LKer‘𝑊)
41, 2, 3lshpkrex 33423 . . . . 5 ((𝑊 ∈ LVec ∧ 𝑠𝐻) → ∃𝑔𝐹 (𝐾𝑔) = 𝑠)
5 eleq1 2676 . . . . . . . . . . . 12 ((𝐾𝑔) = 𝑠 → ((𝐾𝑔) ∈ 𝐻𝑠𝐻))
65biimparc 503 . . . . . . . . . . 11 ((𝑠𝐻 ∧ (𝐾𝑔) = 𝑠) → (𝐾𝑔) ∈ 𝐻)
76adantll 746 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ 𝑠𝐻) ∧ (𝐾𝑔) = 𝑠) → (𝐾𝑔) ∈ 𝐻)
87adantlr 747 . . . . . . . . 9 ((((𝑊 ∈ LVec ∧ 𝑠𝐻) ∧ 𝑔𝐹) ∧ (𝐾𝑔) = 𝑠) → (𝐾𝑔) ∈ 𝐻)
9 lshpset2.v . . . . . . . . . 10 𝑉 = (Base‘𝑊)
10 lshpset2.d . . . . . . . . . 10 𝐷 = (Scalar‘𝑊)
11 lshpset2.z . . . . . . . . . 10 0 = (0g𝐷)
12 simplll 794 . . . . . . . . . 10 ((((𝑊 ∈ LVec ∧ 𝑠𝐻) ∧ 𝑔𝐹) ∧ (𝐾𝑔) = 𝑠) → 𝑊 ∈ LVec)
13 simplr 788 . . . . . . . . . 10 ((((𝑊 ∈ LVec ∧ 𝑠𝐻) ∧ 𝑔𝐹) ∧ (𝐾𝑔) = 𝑠) → 𝑔𝐹)
149, 10, 11, 1, 2, 3, 12, 13lkrshp3 33411 . . . . . . . . 9 ((((𝑊 ∈ LVec ∧ 𝑠𝐻) ∧ 𝑔𝐹) ∧ (𝐾𝑔) = 𝑠) → ((𝐾𝑔) ∈ 𝐻𝑔 ≠ (𝑉 × { 0 })))
158, 14mpbid 221 . . . . . . . 8 ((((𝑊 ∈ LVec ∧ 𝑠𝐻) ∧ 𝑔𝐹) ∧ (𝐾𝑔) = 𝑠) → 𝑔 ≠ (𝑉 × { 0 }))
1615ex 449 . . . . . . 7 (((𝑊 ∈ LVec ∧ 𝑠𝐻) ∧ 𝑔𝐹) → ((𝐾𝑔) = 𝑠𝑔 ≠ (𝑉 × { 0 })))
17 eqimss2 3621 . . . . . . . . 9 ((𝐾𝑔) = 𝑠𝑠 ⊆ (𝐾𝑔))
18 eqimss 3620 . . . . . . . . 9 ((𝐾𝑔) = 𝑠 → (𝐾𝑔) ⊆ 𝑠)
1917, 18eqssd 3585 . . . . . . . 8 ((𝐾𝑔) = 𝑠𝑠 = (𝐾𝑔))
2019a1i 11 . . . . . . 7 (((𝑊 ∈ LVec ∧ 𝑠𝐻) ∧ 𝑔𝐹) → ((𝐾𝑔) = 𝑠𝑠 = (𝐾𝑔)))
2116, 20jcad 554 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝑠𝐻) ∧ 𝑔𝐹) → ((𝐾𝑔) = 𝑠 → (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))))
2221reximdva 3000 . . . . 5 ((𝑊 ∈ LVec ∧ 𝑠𝐻) → (∃𝑔𝐹 (𝐾𝑔) = 𝑠 → ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))))
234, 22mpd 15 . . . 4 ((𝑊 ∈ LVec ∧ 𝑠𝐻) → ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔)))
2423ex 449 . . 3 (𝑊 ∈ LVec → (𝑠𝐻 → ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))))
259, 10, 11, 1, 2, 3lkrshp 33410 . . . . . . . 8 ((𝑊 ∈ LVec ∧ 𝑔𝐹𝑔 ≠ (𝑉 × { 0 })) → (𝐾𝑔) ∈ 𝐻)
26253adant3r 1315 . . . . . . 7 ((𝑊 ∈ LVec ∧ 𝑔𝐹 ∧ (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))) → (𝐾𝑔) ∈ 𝐻)
27 eqid 2610 . . . . . . . . 9 (LSpan‘𝑊) = (LSpan‘𝑊)
28 eqid 2610 . . . . . . . . 9 (LSubSp‘𝑊) = (LSubSp‘𝑊)
299, 27, 28, 1islshp 33284 . . . . . . . 8 (𝑊 ∈ LVec → ((𝐾𝑔) ∈ 𝐻 ↔ ((𝐾𝑔) ∈ (LSubSp‘𝑊) ∧ (𝐾𝑔) ≠ 𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘((𝐾𝑔) ∪ {𝑣})) = 𝑉)))
30293ad2ant1 1075 . . . . . . 7 ((𝑊 ∈ LVec ∧ 𝑔𝐹 ∧ (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))) → ((𝐾𝑔) ∈ 𝐻 ↔ ((𝐾𝑔) ∈ (LSubSp‘𝑊) ∧ (𝐾𝑔) ≠ 𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘((𝐾𝑔) ∪ {𝑣})) = 𝑉)))
3126, 30mpbid 221 . . . . . 6 ((𝑊 ∈ LVec ∧ 𝑔𝐹 ∧ (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))) → ((𝐾𝑔) ∈ (LSubSp‘𝑊) ∧ (𝐾𝑔) ≠ 𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘((𝐾𝑔) ∪ {𝑣})) = 𝑉))
32 eleq1 2676 . . . . . . . . 9 (𝑠 = (𝐾𝑔) → (𝑠 ∈ (LSubSp‘𝑊) ↔ (𝐾𝑔) ∈ (LSubSp‘𝑊)))
33 neeq1 2844 . . . . . . . . 9 (𝑠 = (𝐾𝑔) → (𝑠𝑉 ↔ (𝐾𝑔) ≠ 𝑉))
34 uneq1 3722 . . . . . . . . . . . 12 (𝑠 = (𝐾𝑔) → (𝑠 ∪ {𝑣}) = ((𝐾𝑔) ∪ {𝑣}))
3534fveq2d 6107 . . . . . . . . . . 11 (𝑠 = (𝐾𝑔) → ((LSpan‘𝑊)‘(𝑠 ∪ {𝑣})) = ((LSpan‘𝑊)‘((𝐾𝑔) ∪ {𝑣})))
3635eqeq1d 2612 . . . . . . . . . 10 (𝑠 = (𝐾𝑔) → (((LSpan‘𝑊)‘(𝑠 ∪ {𝑣})) = 𝑉 ↔ ((LSpan‘𝑊)‘((𝐾𝑔) ∪ {𝑣})) = 𝑉))
3736rexbidv 3034 . . . . . . . . 9 (𝑠 = (𝐾𝑔) → (∃𝑣𝑉 ((LSpan‘𝑊)‘(𝑠 ∪ {𝑣})) = 𝑉 ↔ ∃𝑣𝑉 ((LSpan‘𝑊)‘((𝐾𝑔) ∪ {𝑣})) = 𝑉))
3832, 33, 373anbi123d 1391 . . . . . . . 8 (𝑠 = (𝐾𝑔) → ((𝑠 ∈ (LSubSp‘𝑊) ∧ 𝑠𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘(𝑠 ∪ {𝑣})) = 𝑉) ↔ ((𝐾𝑔) ∈ (LSubSp‘𝑊) ∧ (𝐾𝑔) ≠ 𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘((𝐾𝑔) ∪ {𝑣})) = 𝑉)))
3938adantl 481 . . . . . . 7 ((𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔)) → ((𝑠 ∈ (LSubSp‘𝑊) ∧ 𝑠𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘(𝑠 ∪ {𝑣})) = 𝑉) ↔ ((𝐾𝑔) ∈ (LSubSp‘𝑊) ∧ (𝐾𝑔) ≠ 𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘((𝐾𝑔) ∪ {𝑣})) = 𝑉)))
40393ad2ant3 1077 . . . . . 6 ((𝑊 ∈ LVec ∧ 𝑔𝐹 ∧ (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))) → ((𝑠 ∈ (LSubSp‘𝑊) ∧ 𝑠𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘(𝑠 ∪ {𝑣})) = 𝑉) ↔ ((𝐾𝑔) ∈ (LSubSp‘𝑊) ∧ (𝐾𝑔) ≠ 𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘((𝐾𝑔) ∪ {𝑣})) = 𝑉)))
4131, 40mpbird 246 . . . . 5 ((𝑊 ∈ LVec ∧ 𝑔𝐹 ∧ (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))) → (𝑠 ∈ (LSubSp‘𝑊) ∧ 𝑠𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘(𝑠 ∪ {𝑣})) = 𝑉))
4241rexlimdv3a 3015 . . . 4 (𝑊 ∈ LVec → (∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔)) → (𝑠 ∈ (LSubSp‘𝑊) ∧ 𝑠𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘(𝑠 ∪ {𝑣})) = 𝑉)))
439, 27, 28, 1islshp 33284 . . . 4 (𝑊 ∈ LVec → (𝑠𝐻 ↔ (𝑠 ∈ (LSubSp‘𝑊) ∧ 𝑠𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘(𝑠 ∪ {𝑣})) = 𝑉)))
4442, 43sylibrd 248 . . 3 (𝑊 ∈ LVec → (∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔)) → 𝑠𝐻))
4524, 44impbid 201 . 2 (𝑊 ∈ LVec → (𝑠𝐻 ↔ ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))))
4645abbi2dv 2729 1 (𝑊 ∈ LVec → 𝐻 = {𝑠 ∣ ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  {cab 2596  wne 2780  wrex 2897  cun 3538  {csn 4125   × cxp 5036  cfv 5804  Basecbs 15695  Scalarcsca 15771  0gc0g 15923  LSubSpclss 18753  LSpanclspn 18792  LVecclvec 18923  LSHypclsh 33280  LFnlclfn 33362  LKerclk 33390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-subg 17414  df-cntz 17573  df-lsm 17874  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-drng 18572  df-lmod 18688  df-lss 18754  df-lsp 18793  df-lvec 18924  df-lshyp 33282  df-lfl 33363  df-lkr 33391
This theorem is referenced by:  islshpkrN  33425
  Copyright terms: Public domain W3C validator