Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpkrlem6 Structured version   Visualization version   GIF version

Theorem lshpkrlem6 33420
Description: Lemma for lshpkrex 33423. Show linearlity of 𝐺. (Contributed by NM, 17-Jul-2014.)
Hypotheses
Ref Expression
lshpkrlem.v 𝑉 = (Base‘𝑊)
lshpkrlem.a + = (+g𝑊)
lshpkrlem.n 𝑁 = (LSpan‘𝑊)
lshpkrlem.p = (LSSum‘𝑊)
lshpkrlem.h 𝐻 = (LSHyp‘𝑊)
lshpkrlem.w (𝜑𝑊 ∈ LVec)
lshpkrlem.u (𝜑𝑈𝐻)
lshpkrlem.z (𝜑𝑍𝑉)
lshpkrlem.x (𝜑𝑋𝑉)
lshpkrlem.e (𝜑 → (𝑈 (𝑁‘{𝑍})) = 𝑉)
lshpkrlem.d 𝐷 = (Scalar‘𝑊)
lshpkrlem.k 𝐾 = (Base‘𝐷)
lshpkrlem.t · = ( ·𝑠𝑊)
lshpkrlem.o 0 = (0g𝐷)
lshpkrlem.g 𝐺 = (𝑥𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))))
Assertion
Ref Expression
lshpkrlem6 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)))
Distinct variable groups:   𝑥,𝑘,𝑦, +   𝑘,𝐾,𝑥   0 ,𝑘   · ,𝑘,𝑥,𝑦   𝑈,𝑘,𝑥,𝑦   𝑥,𝑉   𝑘,𝑋,𝑥,𝑦   𝑘,𝑍,𝑥,𝑦   + ,𝑙   𝐺,𝑙   𝐾,𝑙   𝑈,𝑙   𝑋,𝑙   𝑍,𝑙,𝑘,𝑥,𝑦   · ,𝑙   𝑢,𝑘,𝑣,𝑥,𝑦,𝑙
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑣,𝑢,𝑘,𝑙)   𝐷(𝑥,𝑦,𝑣,𝑢,𝑘,𝑙)   + (𝑣,𝑢)   (𝑥,𝑦,𝑣,𝑢,𝑘,𝑙)   · (𝑣,𝑢)   𝑈(𝑣,𝑢)   𝐺(𝑥,𝑦,𝑣,𝑢,𝑘)   𝐻(𝑥,𝑦,𝑣,𝑢,𝑘,𝑙)   𝐾(𝑦,𝑣,𝑢)   𝑁(𝑥,𝑦,𝑣,𝑢,𝑘,𝑙)   𝑉(𝑦,𝑣,𝑢,𝑘,𝑙)   𝑊(𝑥,𝑦,𝑣,𝑢,𝑘,𝑙)   𝑋(𝑣,𝑢)   0 (𝑥,𝑦,𝑣,𝑢,𝑙)   𝑍(𝑣,𝑢)

Proof of Theorem lshpkrlem6
Dummy variables 𝑧 𝑠 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lshpkrlem.v . . 3 𝑉 = (Base‘𝑊)
2 lshpkrlem.a . . 3 + = (+g𝑊)
3 lshpkrlem.n . . 3 𝑁 = (LSpan‘𝑊)
4 lshpkrlem.p . . 3 = (LSSum‘𝑊)
5 lshpkrlem.h . . 3 𝐻 = (LSHyp‘𝑊)
6 lshpkrlem.w . . . 4 (𝜑𝑊 ∈ LVec)
76adantr 480 . . 3 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → 𝑊 ∈ LVec)
8 lshpkrlem.u . . . 4 (𝜑𝑈𝐻)
98adantr 480 . . 3 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → 𝑈𝐻)
10 lshpkrlem.z . . . 4 (𝜑𝑍𝑉)
1110adantr 480 . . 3 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → 𝑍𝑉)
12 simpr2 1061 . . 3 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → 𝑢𝑉)
13 lshpkrlem.e . . . 4 (𝜑 → (𝑈 (𝑁‘{𝑍})) = 𝑉)
1413adantr 480 . . 3 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → (𝑈 (𝑁‘{𝑍})) = 𝑉)
15 lshpkrlem.d . . 3 𝐷 = (Scalar‘𝑊)
16 lshpkrlem.k . . 3 𝐾 = (Base‘𝐷)
17 lshpkrlem.t . . 3 · = ( ·𝑠𝑊)
18 lshpkrlem.o . . 3 0 = (0g𝐷)
19 lshpkrlem.g . . 3 𝐺 = (𝑥𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))))
201, 2, 3, 4, 5, 7, 9, 11, 12, 14, 15, 16, 17, 18, 19lshpkrlem3 33417 . 2 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → ∃𝑟𝑈 𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)))
21 simpr3 1062 . . 3 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → 𝑣𝑉)
221, 2, 3, 4, 5, 7, 9, 11, 21, 14, 15, 16, 17, 18, 19lshpkrlem3 33417 . 2 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → ∃𝑠𝑈 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)))
23 lveclmod 18927 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
247, 23syl 17 . . . 4 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → 𝑊 ∈ LMod)
25 simpr1 1060 . . . . 5 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → 𝑙𝐾)
261, 15, 17, 16lmodvscl 18703 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑙𝐾𝑢𝑉) → (𝑙 · 𝑢) ∈ 𝑉)
2724, 25, 12, 26syl3anc 1318 . . . 4 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → (𝑙 · 𝑢) ∈ 𝑉)
281, 2lmodvacl 18700 . . . 4 ((𝑊 ∈ LMod ∧ (𝑙 · 𝑢) ∈ 𝑉𝑣𝑉) → ((𝑙 · 𝑢) + 𝑣) ∈ 𝑉)
2924, 27, 21, 28syl3anc 1318 . . 3 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → ((𝑙 · 𝑢) + 𝑣) ∈ 𝑉)
301, 2, 3, 4, 5, 7, 9, 11, 29, 14, 15, 16, 17, 18, 19lshpkrlem3 33417 . 2 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → ∃𝑧𝑈 ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))
31 3reeanv 3087 . . 3 (∃𝑟𝑈𝑠𝑈𝑧𝑈 (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍))) ↔ (∃𝑟𝑈 𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ ∃𝑠𝑈 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ∃𝑧𝑈 ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍))))
32 simp1l 1078 . . . . . . . 8 (((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) ∧ ((𝑟𝑈𝑠𝑈) ∧ 𝑧𝑈) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝜑)
33 simp1r1 1150 . . . . . . . 8 (((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) ∧ ((𝑟𝑈𝑠𝑈) ∧ 𝑧𝑈) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑙𝐾)
34 simp1r2 1151 . . . . . . . 8 (((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) ∧ ((𝑟𝑈𝑠𝑈) ∧ 𝑧𝑈) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑢𝑉)
35 simp1r3 1152 . . . . . . . 8 (((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) ∧ ((𝑟𝑈𝑠𝑈) ∧ 𝑧𝑈) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑣𝑉)
36 simp2ll 1121 . . . . . . . 8 (((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) ∧ ((𝑟𝑈𝑠𝑈) ∧ 𝑧𝑈) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑟𝑈)
37 simp2lr 1122 . . . . . . . . 9 (((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) ∧ ((𝑟𝑈𝑠𝑈) ∧ 𝑧𝑈) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑠𝑈)
38 simp2r 1081 . . . . . . . . 9 (((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) ∧ ((𝑟𝑈𝑠𝑈) ∧ 𝑧𝑈) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑧𝑈)
3937, 38jca 553 . . . . . . . 8 (((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) ∧ ((𝑟𝑈𝑠𝑈) ∧ 𝑧𝑈) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → (𝑠𝑈𝑧𝑈))
40 simp31 1090 . . . . . . . 8 (((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) ∧ ((𝑟𝑈𝑠𝑈) ∧ 𝑧𝑈) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)))
41 simp32 1091 . . . . . . . 8 (((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) ∧ ((𝑟𝑈𝑠𝑈) ∧ 𝑧𝑈) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)))
42 simp33 1092 . . . . . . . 8 (((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) ∧ ((𝑟𝑈𝑠𝑈) ∧ 𝑧𝑈) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))
431, 2, 3, 4, 5, 6, 8, 10, 10, 13, 15, 16, 17, 18, 19lshpkrlem5 33419 . . . . . . . 8 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)))
4432, 33, 34, 35, 36, 39, 40, 41, 42, 43syl333anc 1350 . . . . . . 7 (((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) ∧ ((𝑟𝑈𝑠𝑈) ∧ 𝑧𝑈) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)))
45443exp 1256 . . . . . 6 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → (((𝑟𝑈𝑠𝑈) ∧ 𝑧𝑈) → ((𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍))) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)))))
4645expdimp 452 . . . . 5 (((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) ∧ (𝑟𝑈𝑠𝑈)) → (𝑧𝑈 → ((𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍))) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)))))
4746rexlimdv 3012 . . . 4 (((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) ∧ (𝑟𝑈𝑠𝑈)) → (∃𝑧𝑈 (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍))) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣))))
4847rexlimdvva 3020 . . 3 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → (∃𝑟𝑈𝑠𝑈𝑧𝑈 (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍))) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣))))
4931, 48syl5bir 232 . 2 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → ((∃𝑟𝑈 𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ ∃𝑠𝑈 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ∃𝑧𝑈 ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍))) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣))))
5020, 22, 30, 49mp3and 1419 1 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wrex 2897  {csn 4125  cmpt 4643  cfv 5804  crio 6510  (class class class)co 6549  Basecbs 15695  +gcplusg 15768  .rcmulr 15769  Scalarcsca 15771   ·𝑠 cvsca 15772  0gc0g 15923  LSSumclsm 17872  LModclmod 18686  LSpanclspn 18792  LVecclvec 18923  LSHypclsh 33280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-subg 17414  df-cntz 17573  df-lsm 17874  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-drng 18572  df-lmod 18688  df-lss 18754  df-lsp 18793  df-lvec 18924  df-lshyp 33282
This theorem is referenced by:  lshpkrcl  33421
  Copyright terms: Public domain W3C validator