MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lpni Structured version   Visualization version   GIF version

Theorem lpni 26722
Description: For any line in a planar incidence geometry, there exists a point not on the line. (Contributed by Jeff Hankins, 15-Aug-2009.)
Hypothesis
Ref Expression
lpni.1 𝑃 = 𝐺
Assertion
Ref Expression
lpni ((𝐺 ∈ Plig ∧ 𝐿𝐺) → ∃𝑎𝑃 𝑎𝐿)
Distinct variable groups:   𝐺,𝑎   𝐿,𝑎   𝑃,𝑎

Proof of Theorem lpni
Dummy variables 𝑏 𝑐 𝑑 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lpni.1 . . . 4 𝑃 = 𝐺
21tncp 26721 . . 3 (𝐺 ∈ Plig → ∃𝑏𝑃𝑐𝑃𝑑𝑃𝑙𝐺 ¬ (𝑏𝑙𝑐𝑙𝑑𝑙))
3 eleq2 2677 . . . . . . . . . 10 (𝑙 = 𝐿 → (𝑏𝑙𝑏𝐿))
4 eleq2 2677 . . . . . . . . . 10 (𝑙 = 𝐿 → (𝑐𝑙𝑐𝐿))
5 eleq2 2677 . . . . . . . . . 10 (𝑙 = 𝐿 → (𝑑𝑙𝑑𝐿))
63, 4, 53anbi123d 1391 . . . . . . . . 9 (𝑙 = 𝐿 → ((𝑏𝑙𝑐𝑙𝑑𝑙) ↔ (𝑏𝐿𝑐𝐿𝑑𝐿)))
76notbid 307 . . . . . . . 8 (𝑙 = 𝐿 → (¬ (𝑏𝑙𝑐𝑙𝑑𝑙) ↔ ¬ (𝑏𝐿𝑐𝐿𝑑𝐿)))
87rspccv 3279 . . . . . . 7 (∀𝑙𝐺 ¬ (𝑏𝑙𝑐𝑙𝑑𝑙) → (𝐿𝐺 → ¬ (𝑏𝐿𝑐𝐿𝑑𝐿)))
9 eleq1 2676 . . . . . . . . . . . 12 (𝑎 = 𝑏 → (𝑎𝐿𝑏𝐿))
109notbid 307 . . . . . . . . . . 11 (𝑎 = 𝑏 → (¬ 𝑎𝐿 ↔ ¬ 𝑏𝐿))
1110rspcev 3282 . . . . . . . . . 10 ((𝑏𝑃 ∧ ¬ 𝑏𝐿) → ∃𝑎𝑃 ¬ 𝑎𝐿)
1211ex 449 . . . . . . . . 9 (𝑏𝑃 → (¬ 𝑏𝐿 → ∃𝑎𝑃 ¬ 𝑎𝐿))
13 eleq1 2676 . . . . . . . . . . . 12 (𝑎 = 𝑐 → (𝑎𝐿𝑐𝐿))
1413notbid 307 . . . . . . . . . . 11 (𝑎 = 𝑐 → (¬ 𝑎𝐿 ↔ ¬ 𝑐𝐿))
1514rspcev 3282 . . . . . . . . . 10 ((𝑐𝑃 ∧ ¬ 𝑐𝐿) → ∃𝑎𝑃 ¬ 𝑎𝐿)
1615ex 449 . . . . . . . . 9 (𝑐𝑃 → (¬ 𝑐𝐿 → ∃𝑎𝑃 ¬ 𝑎𝐿))
17 eleq1 2676 . . . . . . . . . . . 12 (𝑎 = 𝑑 → (𝑎𝐿𝑑𝐿))
1817notbid 307 . . . . . . . . . . 11 (𝑎 = 𝑑 → (¬ 𝑎𝐿 ↔ ¬ 𝑑𝐿))
1918rspcev 3282 . . . . . . . . . 10 ((𝑑𝑃 ∧ ¬ 𝑑𝐿) → ∃𝑎𝑃 ¬ 𝑎𝐿)
2019ex 449 . . . . . . . . 9 (𝑑𝑃 → (¬ 𝑑𝐿 → ∃𝑎𝑃 ¬ 𝑎𝐿))
2112, 16, 203jaao 1388 . . . . . . . 8 ((𝑏𝑃𝑐𝑃𝑑𝑃) → ((¬ 𝑏𝐿 ∨ ¬ 𝑐𝐿 ∨ ¬ 𝑑𝐿) → ∃𝑎𝑃 ¬ 𝑎𝐿))
22 3ianor 1048 . . . . . . . 8 (¬ (𝑏𝐿𝑐𝐿𝑑𝐿) ↔ (¬ 𝑏𝐿 ∨ ¬ 𝑐𝐿 ∨ ¬ 𝑑𝐿))
23 df-nel 2783 . . . . . . . . 9 (𝑎𝐿 ↔ ¬ 𝑎𝐿)
2423rexbii 3023 . . . . . . . 8 (∃𝑎𝑃 𝑎𝐿 ↔ ∃𝑎𝑃 ¬ 𝑎𝐿)
2521, 22, 243imtr4g 284 . . . . . . 7 ((𝑏𝑃𝑐𝑃𝑑𝑃) → (¬ (𝑏𝐿𝑐𝐿𝑑𝐿) → ∃𝑎𝑃 𝑎𝐿))
268, 25syl9r 76 . . . . . 6 ((𝑏𝑃𝑐𝑃𝑑𝑃) → (∀𝑙𝐺 ¬ (𝑏𝑙𝑐𝑙𝑑𝑙) → (𝐿𝐺 → ∃𝑎𝑃 𝑎𝐿)))
27263expia 1259 . . . . 5 ((𝑏𝑃𝑐𝑃) → (𝑑𝑃 → (∀𝑙𝐺 ¬ (𝑏𝑙𝑐𝑙𝑑𝑙) → (𝐿𝐺 → ∃𝑎𝑃 𝑎𝐿))))
2827rexlimdv 3012 . . . 4 ((𝑏𝑃𝑐𝑃) → (∃𝑑𝑃𝑙𝐺 ¬ (𝑏𝑙𝑐𝑙𝑑𝑙) → (𝐿𝐺 → ∃𝑎𝑃 𝑎𝐿)))
2928rexlimivv 3018 . . 3 (∃𝑏𝑃𝑐𝑃𝑑𝑃𝑙𝐺 ¬ (𝑏𝑙𝑐𝑙𝑑𝑙) → (𝐿𝐺 → ∃𝑎𝑃 𝑎𝐿))
302, 29syl 17 . 2 (𝐺 ∈ Plig → (𝐿𝐺 → ∃𝑎𝑃 𝑎𝐿))
3130imp 444 1 ((𝐺 ∈ Plig ∧ 𝐿𝐺) → ∃𝑎𝑃 𝑎𝐿)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3o 1030  w3a 1031   = wceq 1475  wcel 1977  wnel 2781  wral 2896  wrex 2897   cuni 4372  Pligcplig 26718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-v 3175  df-uni 4373  df-plig 26719
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator