Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lplnn0N | Structured version Visualization version GIF version |
Description: A lattice plane is nonzero. (Contributed by NM, 15-Jul-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lplnn0.z | ⊢ 0 = (0.‘𝐾) |
lplnn0.p | ⊢ 𝑃 = (LPlanes‘𝐾) |
Ref | Expression |
---|---|
lplnn0N | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃) → 𝑋 ≠ 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2610 | . . . . 5 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
2 | 1 | atex 33710 | . . . 4 ⊢ (𝐾 ∈ HL → (Atoms‘𝐾) ≠ ∅) |
3 | n0 3890 | . . . 4 ⊢ ((Atoms‘𝐾) ≠ ∅ ↔ ∃𝑝 𝑝 ∈ (Atoms‘𝐾)) | |
4 | 2, 3 | sylib 207 | . . 3 ⊢ (𝐾 ∈ HL → ∃𝑝 𝑝 ∈ (Atoms‘𝐾)) |
5 | 4 | adantr 480 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃) → ∃𝑝 𝑝 ∈ (Atoms‘𝐾)) |
6 | eqid 2610 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
7 | lplnn0.p | . . . . 5 ⊢ 𝑃 = (LPlanes‘𝐾) | |
8 | 6, 1, 7 | lplnnleat 33846 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑝 ∈ (Atoms‘𝐾)) → ¬ 𝑋(le‘𝐾)𝑝) |
9 | 8 | 3expa 1257 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃) ∧ 𝑝 ∈ (Atoms‘𝐾)) → ¬ 𝑋(le‘𝐾)𝑝) |
10 | hlop 33667 | . . . . . . 7 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | |
11 | 10 | ad2antrr 758 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝐾 ∈ OP) |
12 | eqid 2610 | . . . . . . . 8 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
13 | 12, 1 | atbase 33594 | . . . . . . 7 ⊢ (𝑝 ∈ (Atoms‘𝐾) → 𝑝 ∈ (Base‘𝐾)) |
14 | 13 | adantl 481 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝑝 ∈ (Base‘𝐾)) |
15 | lplnn0.z | . . . . . . 7 ⊢ 0 = (0.‘𝐾) | |
16 | 12, 6, 15 | op0le 33491 | . . . . . 6 ⊢ ((𝐾 ∈ OP ∧ 𝑝 ∈ (Base‘𝐾)) → 0 (le‘𝐾)𝑝) |
17 | 11, 14, 16 | syl2anc 691 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 0 (le‘𝐾)𝑝) |
18 | breq1 4586 | . . . . 5 ⊢ (𝑋 = 0 → (𝑋(le‘𝐾)𝑝 ↔ 0 (le‘𝐾)𝑝)) | |
19 | 17, 18 | syl5ibrcom 236 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (𝑋 = 0 → 𝑋(le‘𝐾)𝑝)) |
20 | 19 | necon3bd 2796 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (¬ 𝑋(le‘𝐾)𝑝 → 𝑋 ≠ 0 )) |
21 | 9, 20 | mpd 15 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝑋 ≠ 0 ) |
22 | 5, 21 | exlimddv 1850 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃) → 𝑋 ≠ 0 ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 = wceq 1475 ∃wex 1695 ∈ wcel 1977 ≠ wne 2780 ∅c0 3874 class class class wbr 4583 ‘cfv 5804 Basecbs 15695 lecple 15775 0.cp0 16860 OPcops 33477 Atomscatm 33568 HLchlt 33655 LPlanesclpl 33796 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-preset 16751 df-poset 16769 df-plt 16781 df-lub 16797 df-glb 16798 df-join 16799 df-meet 16800 df-p0 16862 df-p1 16863 df-lat 16869 df-clat 16931 df-oposet 33481 df-ol 33483 df-oml 33484 df-covers 33571 df-ats 33572 df-atl 33603 df-cvlat 33627 df-hlat 33656 df-llines 33802 df-lplanes 33803 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |