Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lplni2 Structured version   Visualization version   GIF version

Theorem lplni2 33841
Description: The join of 3 different atoms is a lattice plane. (Contributed by NM, 4-Jul-2012.)
Hypotheses
Ref Expression
lplni2.l = (le‘𝐾)
lplni2.j = (join‘𝐾)
lplni2.a 𝐴 = (Atoms‘𝐾)
lplni2.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
lplni2 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅))) → ((𝑄 𝑅) 𝑆) ∈ 𝑃)

Proof of Theorem lplni2
Dummy variables 𝑟 𝑞 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1055 . . 3 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅))) → (𝑄𝐴𝑅𝐴𝑆𝐴))
2 simp3l 1082 . . 3 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅))) → 𝑄𝑅)
3 simp3r 1083 . . 3 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅))) → ¬ 𝑆 (𝑄 𝑅))
4 eqidd 2611 . . 3 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅))) → ((𝑄 𝑅) 𝑆) = ((𝑄 𝑅) 𝑆))
5 neeq1 2844 . . . . 5 (𝑞 = 𝑄 → (𝑞𝑟𝑄𝑟))
6 oveq1 6556 . . . . . . 7 (𝑞 = 𝑄 → (𝑞 𝑟) = (𝑄 𝑟))
76breq2d 4595 . . . . . 6 (𝑞 = 𝑄 → (𝑠 (𝑞 𝑟) ↔ 𝑠 (𝑄 𝑟)))
87notbid 307 . . . . 5 (𝑞 = 𝑄 → (¬ 𝑠 (𝑞 𝑟) ↔ ¬ 𝑠 (𝑄 𝑟)))
96oveq1d 6564 . . . . . 6 (𝑞 = 𝑄 → ((𝑞 𝑟) 𝑠) = ((𝑄 𝑟) 𝑠))
109eqeq2d 2620 . . . . 5 (𝑞 = 𝑄 → (((𝑄 𝑅) 𝑆) = ((𝑞 𝑟) 𝑠) ↔ ((𝑄 𝑅) 𝑆) = ((𝑄 𝑟) 𝑠)))
115, 8, 103anbi123d 1391 . . . 4 (𝑞 = 𝑄 → ((𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ ((𝑄 𝑅) 𝑆) = ((𝑞 𝑟) 𝑠)) ↔ (𝑄𝑟 ∧ ¬ 𝑠 (𝑄 𝑟) ∧ ((𝑄 𝑅) 𝑆) = ((𝑄 𝑟) 𝑠))))
12 neeq2 2845 . . . . 5 (𝑟 = 𝑅 → (𝑄𝑟𝑄𝑅))
13 oveq2 6557 . . . . . . 7 (𝑟 = 𝑅 → (𝑄 𝑟) = (𝑄 𝑅))
1413breq2d 4595 . . . . . 6 (𝑟 = 𝑅 → (𝑠 (𝑄 𝑟) ↔ 𝑠 (𝑄 𝑅)))
1514notbid 307 . . . . 5 (𝑟 = 𝑅 → (¬ 𝑠 (𝑄 𝑟) ↔ ¬ 𝑠 (𝑄 𝑅)))
1613oveq1d 6564 . . . . . 6 (𝑟 = 𝑅 → ((𝑄 𝑟) 𝑠) = ((𝑄 𝑅) 𝑠))
1716eqeq2d 2620 . . . . 5 (𝑟 = 𝑅 → (((𝑄 𝑅) 𝑆) = ((𝑄 𝑟) 𝑠) ↔ ((𝑄 𝑅) 𝑆) = ((𝑄 𝑅) 𝑠)))
1812, 15, 173anbi123d 1391 . . . 4 (𝑟 = 𝑅 → ((𝑄𝑟 ∧ ¬ 𝑠 (𝑄 𝑟) ∧ ((𝑄 𝑅) 𝑆) = ((𝑄 𝑟) 𝑠)) ↔ (𝑄𝑅 ∧ ¬ 𝑠 (𝑄 𝑅) ∧ ((𝑄 𝑅) 𝑆) = ((𝑄 𝑅) 𝑠))))
19 breq1 4586 . . . . . 6 (𝑠 = 𝑆 → (𝑠 (𝑄 𝑅) ↔ 𝑆 (𝑄 𝑅)))
2019notbid 307 . . . . 5 (𝑠 = 𝑆 → (¬ 𝑠 (𝑄 𝑅) ↔ ¬ 𝑆 (𝑄 𝑅)))
21 oveq2 6557 . . . . . 6 (𝑠 = 𝑆 → ((𝑄 𝑅) 𝑠) = ((𝑄 𝑅) 𝑆))
2221eqeq2d 2620 . . . . 5 (𝑠 = 𝑆 → (((𝑄 𝑅) 𝑆) = ((𝑄 𝑅) 𝑠) ↔ ((𝑄 𝑅) 𝑆) = ((𝑄 𝑅) 𝑆)))
2320, 223anbi23d 1394 . . . 4 (𝑠 = 𝑆 → ((𝑄𝑅 ∧ ¬ 𝑠 (𝑄 𝑅) ∧ ((𝑄 𝑅) 𝑆) = ((𝑄 𝑅) 𝑠)) ↔ (𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅) ∧ ((𝑄 𝑅) 𝑆) = ((𝑄 𝑅) 𝑆))))
2411, 18, 23rspc3ev 3297 . . 3 (((𝑄𝐴𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅) ∧ ((𝑄 𝑅) 𝑆) = ((𝑄 𝑅) 𝑆))) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ ((𝑄 𝑅) 𝑆) = ((𝑞 𝑟) 𝑠)))
251, 2, 3, 4, 24syl13anc 1320 . 2 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅))) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ ((𝑄 𝑅) 𝑆) = ((𝑞 𝑟) 𝑠)))
26 simp1 1054 . . 3 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅))) → 𝐾 ∈ HL)
27 hllat 33668 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ Lat)
28273ad2ant1 1075 . . . 4 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅))) → 𝐾 ∈ Lat)
29 simp21 1087 . . . . 5 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅))) → 𝑄𝐴)
30 simp22 1088 . . . . 5 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅))) → 𝑅𝐴)
31 eqid 2610 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
32 lplni2.j . . . . . 6 = (join‘𝐾)
33 lplni2.a . . . . . 6 𝐴 = (Atoms‘𝐾)
3431, 32, 33hlatjcl 33671 . . . . 5 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴) → (𝑄 𝑅) ∈ (Base‘𝐾))
3526, 29, 30, 34syl3anc 1318 . . . 4 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅))) → (𝑄 𝑅) ∈ (Base‘𝐾))
36 simp23 1089 . . . . 5 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅))) → 𝑆𝐴)
3731, 33atbase 33594 . . . . 5 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
3836, 37syl 17 . . . 4 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅))) → 𝑆 ∈ (Base‘𝐾))
3931, 32latjcl 16874 . . . 4 ((𝐾 ∈ Lat ∧ (𝑄 𝑅) ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → ((𝑄 𝑅) 𝑆) ∈ (Base‘𝐾))
4028, 35, 38, 39syl3anc 1318 . . 3 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅))) → ((𝑄 𝑅) 𝑆) ∈ (Base‘𝐾))
41 lplni2.l . . . 4 = (le‘𝐾)
42 lplni2.p . . . 4 𝑃 = (LPlanes‘𝐾)
4331, 41, 32, 33, 42islpln5 33839 . . 3 ((𝐾 ∈ HL ∧ ((𝑄 𝑅) 𝑆) ∈ (Base‘𝐾)) → (((𝑄 𝑅) 𝑆) ∈ 𝑃 ↔ ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ ((𝑄 𝑅) 𝑆) = ((𝑞 𝑟) 𝑠))))
4426, 40, 43syl2anc 691 . 2 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅))) → (((𝑄 𝑅) 𝑆) ∈ 𝑃 ↔ ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ ((𝑄 𝑅) 𝑆) = ((𝑞 𝑟) 𝑠))))
4525, 44mpbird 246 1 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅))) → ((𝑄 𝑅) 𝑆) ∈ 𝑃)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wrex 2897   class class class wbr 4583  cfv 5804  (class class class)co 6549  Basecbs 15695  lecple 15775  joincjn 16767  Latclat 16868  Atomscatm 33568  HLchlt 33655  LPlanesclpl 33796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-lat 16869  df-clat 16931  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-llines 33802  df-lplanes 33803
This theorem is referenced by:  islpln2a  33852  2llnjaN  33870  lvolnle3at  33886  dalem42  34018  cdleme16aN  34564
  Copyright terms: Public domain W3C validator