MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logdivsum Structured version   Visualization version   GIF version

Theorem logdivsum 25022
Description: Asymptotic analysis of Σ𝑛𝑥, log𝑛 / 𝑛 = (log𝑥)↑2 / 2 + 𝐿 + 𝑂(log𝑥 / 𝑥). (Contributed by Mario Carneiro, 18-May-2016.)
Hypothesis
Ref Expression
logdivsum.1 𝐹 = (𝑦 ∈ ℝ+ ↦ (Σ𝑖 ∈ (1...(⌊‘𝑦))((log‘𝑖) / 𝑖) − (((log‘𝑦)↑2) / 2)))
Assertion
Ref Expression
logdivsum (𝐹:ℝ+⟶ℝ ∧ 𝐹 ∈ dom ⇝𝑟 ∧ ((𝐹𝑟 𝐿𝐴 ∈ ℝ+ ∧ e ≤ 𝐴) → (abs‘((𝐹𝐴) − 𝐿)) ≤ ((log‘𝐴) / 𝐴)))
Distinct variable group:   𝑦,𝑖,𝐴
Allowed substitution hints:   𝐹(𝑦,𝑖)   𝐿(𝑦,𝑖)

Proof of Theorem logdivsum
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ioorp 12122 . . . 4 (0(,)+∞) = ℝ+
21eqcomi 2619 . . 3 + = (0(,)+∞)
3 nnuz 11599 . . 3 ℕ = (ℤ‘1)
4 1zzd 11285 . . 3 (⊤ → 1 ∈ ℤ)
5 ere 14658 . . . 4 e ∈ ℝ
65a1i 11 . . 3 (⊤ → e ∈ ℝ)
7 0re 9919 . . . . . 6 0 ∈ ℝ
8 epos 14774 . . . . . 6 0 < e
97, 5, 8ltleii 10039 . . . . 5 0 ≤ e
109a1i 11 . . . 4 (⊤ → 0 ≤ e)
11 1re 9918 . . . . 5 1 ∈ ℝ
12 addge02 10418 . . . . 5 ((1 ∈ ℝ ∧ e ∈ ℝ) → (0 ≤ e ↔ 1 ≤ (e + 1)))
1311, 5, 12mp2an 704 . . . 4 (0 ≤ e ↔ 1 ≤ (e + 1))
1410, 13sylib 207 . . 3 (⊤ → 1 ≤ (e + 1))
157a1i 11 . . 3 (⊤ → 0 ∈ ℝ)
16 relogcl 24126 . . . . . 6 (𝑦 ∈ ℝ+ → (log‘𝑦) ∈ ℝ)
1716adantl 481 . . . . 5 ((⊤ ∧ 𝑦 ∈ ℝ+) → (log‘𝑦) ∈ ℝ)
1817resqcld 12897 . . . 4 ((⊤ ∧ 𝑦 ∈ ℝ+) → ((log‘𝑦)↑2) ∈ ℝ)
1918rehalfcld 11156 . . 3 ((⊤ ∧ 𝑦 ∈ ℝ+) → (((log‘𝑦)↑2) / 2) ∈ ℝ)
20 rerpdivcl 11737 . . . . 5 (((log‘𝑦) ∈ ℝ ∧ 𝑦 ∈ ℝ+) → ((log‘𝑦) / 𝑦) ∈ ℝ)
2116, 20mpancom 700 . . . 4 (𝑦 ∈ ℝ+ → ((log‘𝑦) / 𝑦) ∈ ℝ)
2221adantl 481 . . 3 ((⊤ ∧ 𝑦 ∈ ℝ+) → ((log‘𝑦) / 𝑦) ∈ ℝ)
23 nnrp 11718 . . . 4 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ+)
2423, 22sylan2 490 . . 3 ((⊤ ∧ 𝑦 ∈ ℕ) → ((log‘𝑦) / 𝑦) ∈ ℝ)
25 reelprrecn 9907 . . . . . 6 ℝ ∈ {ℝ, ℂ}
2625a1i 11 . . . . 5 (⊤ → ℝ ∈ {ℝ, ℂ})
27 cnelprrecn 9908 . . . . . 6 ℂ ∈ {ℝ, ℂ}
2827a1i 11 . . . . 5 (⊤ → ℂ ∈ {ℝ, ℂ})
2917recnd 9947 . . . . 5 ((⊤ ∧ 𝑦 ∈ ℝ+) → (log‘𝑦) ∈ ℂ)
30 ovex 6577 . . . . . 6 (1 / 𝑦) ∈ V
3130a1i 11 . . . . 5 ((⊤ ∧ 𝑦 ∈ ℝ+) → (1 / 𝑦) ∈ V)
32 sqcl 12787 . . . . . . 7 (𝑥 ∈ ℂ → (𝑥↑2) ∈ ℂ)
3332adantl 481 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℂ) → (𝑥↑2) ∈ ℂ)
3433halfcld 11154 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℂ) → ((𝑥↑2) / 2) ∈ ℂ)
35 simpr 476 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
36 dvrelog 24183 . . . . . 6 (ℝ D (log ↾ ℝ+)) = (𝑦 ∈ ℝ+ ↦ (1 / 𝑦))
37 relogf1o 24117 . . . . . . . . . 10 (log ↾ ℝ+):ℝ+1-1-onto→ℝ
38 f1of 6050 . . . . . . . . . 10 ((log ↾ ℝ+):ℝ+1-1-onto→ℝ → (log ↾ ℝ+):ℝ+⟶ℝ)
3937, 38mp1i 13 . . . . . . . . 9 (⊤ → (log ↾ ℝ+):ℝ+⟶ℝ)
4039feqmptd 6159 . . . . . . . 8 (⊤ → (log ↾ ℝ+) = (𝑦 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑦)))
41 fvres 6117 . . . . . . . . 9 (𝑦 ∈ ℝ+ → ((log ↾ ℝ+)‘𝑦) = (log‘𝑦))
4241mpteq2ia 4668 . . . . . . . 8 (𝑦 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑦)) = (𝑦 ∈ ℝ+ ↦ (log‘𝑦))
4340, 42syl6eq 2660 . . . . . . 7 (⊤ → (log ↾ ℝ+) = (𝑦 ∈ ℝ+ ↦ (log‘𝑦)))
4443oveq2d 6565 . . . . . 6 (⊤ → (ℝ D (log ↾ ℝ+)) = (ℝ D (𝑦 ∈ ℝ+ ↦ (log‘𝑦))))
4536, 44syl5reqr 2659 . . . . 5 (⊤ → (ℝ D (𝑦 ∈ ℝ+ ↦ (log‘𝑦))) = (𝑦 ∈ ℝ+ ↦ (1 / 𝑦)))
46 ovex 6577 . . . . . . . 8 (2 · 𝑥) ∈ V
4746a1i 11 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℂ) → (2 · 𝑥) ∈ V)
48 2nn 11062 . . . . . . . . 9 2 ∈ ℕ
49 dvexp 23522 . . . . . . . . 9 (2 ∈ ℕ → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑2))) = (𝑥 ∈ ℂ ↦ (2 · (𝑥↑(2 − 1)))))
5048, 49mp1i 13 . . . . . . . 8 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑2))) = (𝑥 ∈ ℂ ↦ (2 · (𝑥↑(2 − 1)))))
51 2m1e1 11012 . . . . . . . . . . . 12 (2 − 1) = 1
5251oveq2i 6560 . . . . . . . . . . 11 (𝑥↑(2 − 1)) = (𝑥↑1)
53 exp1 12728 . . . . . . . . . . . 12 (𝑥 ∈ ℂ → (𝑥↑1) = 𝑥)
5453adantl 481 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ ℂ) → (𝑥↑1) = 𝑥)
5552, 54syl5eq 2656 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℂ) → (𝑥↑(2 − 1)) = 𝑥)
5655oveq2d 6565 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℂ) → (2 · (𝑥↑(2 − 1))) = (2 · 𝑥))
5756mpteq2dva 4672 . . . . . . . 8 (⊤ → (𝑥 ∈ ℂ ↦ (2 · (𝑥↑(2 − 1)))) = (𝑥 ∈ ℂ ↦ (2 · 𝑥)))
5850, 57eqtrd 2644 . . . . . . 7 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑2))) = (𝑥 ∈ ℂ ↦ (2 · 𝑥)))
59 2cn 10968 . . . . . . . 8 2 ∈ ℂ
6059a1i 11 . . . . . . 7 (⊤ → 2 ∈ ℂ)
61 2ne0 10990 . . . . . . . 8 2 ≠ 0
6261a1i 11 . . . . . . 7 (⊤ → 2 ≠ 0)
6328, 33, 47, 58, 60, 62dvmptdivc 23534 . . . . . 6 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ ((𝑥↑2) / 2))) = (𝑥 ∈ ℂ ↦ ((2 · 𝑥) / 2)))
64 divcan3 10590 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → ((2 · 𝑥) / 2) = 𝑥)
6559, 61, 64mp3an23 1408 . . . . . . . 8 (𝑥 ∈ ℂ → ((2 · 𝑥) / 2) = 𝑥)
6665adantl 481 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℂ) → ((2 · 𝑥) / 2) = 𝑥)
6766mpteq2dva 4672 . . . . . 6 (⊤ → (𝑥 ∈ ℂ ↦ ((2 · 𝑥) / 2)) = (𝑥 ∈ ℂ ↦ 𝑥))
6863, 67eqtrd 2644 . . . . 5 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ ((𝑥↑2) / 2))) = (𝑥 ∈ ℂ ↦ 𝑥))
69 oveq1 6556 . . . . . 6 (𝑥 = (log‘𝑦) → (𝑥↑2) = ((log‘𝑦)↑2))
7069oveq1d 6564 . . . . 5 (𝑥 = (log‘𝑦) → ((𝑥↑2) / 2) = (((log‘𝑦)↑2) / 2))
71 id 22 . . . . 5 (𝑥 = (log‘𝑦) → 𝑥 = (log‘𝑦))
7226, 28, 29, 31, 34, 35, 45, 68, 70, 71dvmptco 23541 . . . 4 (⊤ → (ℝ D (𝑦 ∈ ℝ+ ↦ (((log‘𝑦)↑2) / 2))) = (𝑦 ∈ ℝ+ ↦ ((log‘𝑦) · (1 / 𝑦))))
73 rpcn 11717 . . . . . . 7 (𝑦 ∈ ℝ+𝑦 ∈ ℂ)
7473adantl 481 . . . . . 6 ((⊤ ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈ ℂ)
75 rpne0 11724 . . . . . . 7 (𝑦 ∈ ℝ+𝑦 ≠ 0)
7675adantl 481 . . . . . 6 ((⊤ ∧ 𝑦 ∈ ℝ+) → 𝑦 ≠ 0)
7729, 74, 76divrecd 10683 . . . . 5 ((⊤ ∧ 𝑦 ∈ ℝ+) → ((log‘𝑦) / 𝑦) = ((log‘𝑦) · (1 / 𝑦)))
7877mpteq2dva 4672 . . . 4 (⊤ → (𝑦 ∈ ℝ+ ↦ ((log‘𝑦) / 𝑦)) = (𝑦 ∈ ℝ+ ↦ ((log‘𝑦) · (1 / 𝑦))))
7972, 78eqtr4d 2647 . . 3 (⊤ → (ℝ D (𝑦 ∈ ℝ+ ↦ (((log‘𝑦)↑2) / 2))) = (𝑦 ∈ ℝ+ ↦ ((log‘𝑦) / 𝑦)))
80 fveq2 6103 . . . 4 (𝑦 = 𝑖 → (log‘𝑦) = (log‘𝑖))
81 id 22 . . . 4 (𝑦 = 𝑖𝑦 = 𝑖)
8280, 81oveq12d 6567 . . 3 (𝑦 = 𝑖 → ((log‘𝑦) / 𝑦) = ((log‘𝑖) / 𝑖))
83 simp3r 1083 . . . 4 ((⊤ ∧ (𝑦 ∈ ℝ+𝑖 ∈ ℝ+) ∧ (e ≤ 𝑦𝑦𝑖)) → 𝑦𝑖)
84 simp2l 1080 . . . . . 6 ((⊤ ∧ (𝑦 ∈ ℝ+𝑖 ∈ ℝ+) ∧ (e ≤ 𝑦𝑦𝑖)) → 𝑦 ∈ ℝ+)
8584rpred 11748 . . . . 5 ((⊤ ∧ (𝑦 ∈ ℝ+𝑖 ∈ ℝ+) ∧ (e ≤ 𝑦𝑦𝑖)) → 𝑦 ∈ ℝ)
86 simp3l 1082 . . . . 5 ((⊤ ∧ (𝑦 ∈ ℝ+𝑖 ∈ ℝ+) ∧ (e ≤ 𝑦𝑦𝑖)) → e ≤ 𝑦)
87 simp2r 1081 . . . . . 6 ((⊤ ∧ (𝑦 ∈ ℝ+𝑖 ∈ ℝ+) ∧ (e ≤ 𝑦𝑦𝑖)) → 𝑖 ∈ ℝ+)
8887rpred 11748 . . . . 5 ((⊤ ∧ (𝑦 ∈ ℝ+𝑖 ∈ ℝ+) ∧ (e ≤ 𝑦𝑦𝑖)) → 𝑖 ∈ ℝ)
895a1i 11 . . . . . 6 ((⊤ ∧ (𝑦 ∈ ℝ+𝑖 ∈ ℝ+) ∧ (e ≤ 𝑦𝑦𝑖)) → e ∈ ℝ)
9089, 85, 88, 86, 83letrd 10073 . . . . 5 ((⊤ ∧ (𝑦 ∈ ℝ+𝑖 ∈ ℝ+) ∧ (e ≤ 𝑦𝑦𝑖)) → e ≤ 𝑖)
91 logdivle 24172 . . . . 5 (((𝑦 ∈ ℝ ∧ e ≤ 𝑦) ∧ (𝑖 ∈ ℝ ∧ e ≤ 𝑖)) → (𝑦𝑖 ↔ ((log‘𝑖) / 𝑖) ≤ ((log‘𝑦) / 𝑦)))
9285, 86, 88, 90, 91syl22anc 1319 . . . 4 ((⊤ ∧ (𝑦 ∈ ℝ+𝑖 ∈ ℝ+) ∧ (e ≤ 𝑦𝑦𝑖)) → (𝑦𝑖 ↔ ((log‘𝑖) / 𝑖) ≤ ((log‘𝑦) / 𝑦)))
9383, 92mpbid 221 . . 3 ((⊤ ∧ (𝑦 ∈ ℝ+𝑖 ∈ ℝ+) ∧ (e ≤ 𝑦𝑦𝑖)) → ((log‘𝑖) / 𝑖) ≤ ((log‘𝑦) / 𝑦))
94 logdivsum.1 . . 3 𝐹 = (𝑦 ∈ ℝ+ ↦ (Σ𝑖 ∈ (1...(⌊‘𝑦))((log‘𝑖) / 𝑖) − (((log‘𝑦)↑2) / 2)))
9573cxp1d 24252 . . . . . 6 (𝑦 ∈ ℝ+ → (𝑦𝑐1) = 𝑦)
9695oveq2d 6565 . . . . 5 (𝑦 ∈ ℝ+ → ((log‘𝑦) / (𝑦𝑐1)) = ((log‘𝑦) / 𝑦))
9796mpteq2ia 4668 . . . 4 (𝑦 ∈ ℝ+ ↦ ((log‘𝑦) / (𝑦𝑐1))) = (𝑦 ∈ ℝ+ ↦ ((log‘𝑦) / 𝑦))
98 1rp 11712 . . . . 5 1 ∈ ℝ+
99 cxploglim 24504 . . . . 5 (1 ∈ ℝ+ → (𝑦 ∈ ℝ+ ↦ ((log‘𝑦) / (𝑦𝑐1))) ⇝𝑟 0)
10098, 99mp1i 13 . . . 4 (⊤ → (𝑦 ∈ ℝ+ ↦ ((log‘𝑦) / (𝑦𝑐1))) ⇝𝑟 0)
10197, 100syl5eqbrr 4619 . . 3 (⊤ → (𝑦 ∈ ℝ+ ↦ ((log‘𝑦) / 𝑦)) ⇝𝑟 0)
102 fveq2 6103 . . . 4 (𝑦 = 𝐴 → (log‘𝑦) = (log‘𝐴))
103 id 22 . . . 4 (𝑦 = 𝐴𝑦 = 𝐴)
104102, 103oveq12d 6567 . . 3 (𝑦 = 𝐴 → ((log‘𝑦) / 𝑦) = ((log‘𝐴) / 𝐴))
1052, 3, 4, 6, 14, 15, 19, 22, 24, 79, 82, 93, 94, 101, 104dvfsumrlim3 23600 . 2 (⊤ → (𝐹:ℝ+⟶ℝ ∧ 𝐹 ∈ dom ⇝𝑟 ∧ ((𝐹𝑟 𝐿𝐴 ∈ ℝ+ ∧ e ≤ 𝐴) → (abs‘((𝐹𝐴) − 𝐿)) ≤ ((log‘𝐴) / 𝐴))))
106105trud 1484 1 (𝐹:ℝ+⟶ℝ ∧ 𝐹 ∈ dom ⇝𝑟 ∧ ((𝐹𝑟 𝐿𝐴 ∈ ℝ+ ∧ e ≤ 𝐴) → (abs‘((𝐹𝐴) − 𝐿)) ≤ ((log‘𝐴) / 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wtru 1476  wcel 1977  wne 2780  Vcvv 3173  {cpr 4127   class class class wbr 4583  cmpt 4643  dom cdm 5038  cres 5040  wf 5800  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  +∞cpnf 9950  cle 9954  cmin 10145   / cdiv 10563  cn 10897  2c2 10947  +crp 11708  (,)cioo 12046  ...cfz 12197  cfl 12453  cexp 12722  abscabs 13822  𝑟 crli 14064  Σcsu 14264  eceu 14632   D cdv 23433  logclog 24105  𝑐ccxp 24106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-e 14638  df-sin 14639  df-cos 14640  df-pi 14642  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-cmp 21000  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437  df-log 24107  df-cxp 24108
This theorem is referenced by:  mulog2sumlem1  25023  mulog2sum  25026  vmalogdivsum2  25027
  Copyright terms: Public domain W3C validator