Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lo1res2 | Structured version Visualization version GIF version |
Description: The restriction of a function is eventually bounded if the original is. (Contributed by Mario Carneiro, 26-May-2016.) |
Ref | Expression |
---|---|
rlimres2.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
lo1res2.2 | ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ ≤𝑂(1)) |
Ref | Expression |
---|---|
lo1res2 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ ≤𝑂(1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rlimres2.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | 1 | resmptd 5371 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ 𝐶) ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 𝐶)) |
3 | lo1res2.2 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ ≤𝑂(1)) | |
4 | lo1res 14138 | . . 3 ⊢ ((𝑥 ∈ 𝐵 ↦ 𝐶) ∈ ≤𝑂(1) → ((𝑥 ∈ 𝐵 ↦ 𝐶) ↾ 𝐴) ∈ ≤𝑂(1)) | |
5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ 𝐶) ↾ 𝐴) ∈ ≤𝑂(1)) |
6 | 2, 5 | eqeltrrd 2689 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ ≤𝑂(1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 1977 ⊆ wss 3540 ↦ cmpt 4643 ↾ cres 5040 ≤𝑂(1)clo1 14066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-pre-lttri 9889 ax-pre-lttrn 9890 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-po 4959 df-so 4960 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-er 7629 df-pm 7747 df-en 7842 df-dom 7843 df-sdom 7844 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-ico 12052 df-lo1 14070 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |