Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lo1bddrp | Structured version Visualization version GIF version |
Description: Refine o1bdd2 14120 to give a strictly positive upper bound. (Contributed by Mario Carneiro, 25-May-2016.) |
Ref | Expression |
---|---|
lo1bdd2.1 | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
lo1bdd2.2 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
lo1bdd2.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
lo1bdd2.4 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1)) |
lo1bdd2.5 | ⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝐶 ≤ 𝑦)) → 𝑀 ∈ ℝ) |
lo1bdd2.6 | ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ ((𝑦 ∈ ℝ ∧ 𝐶 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝐵 ≤ 𝑀) |
Ref | Expression |
---|---|
lo1bddrp | ⊢ (𝜑 → ∃𝑚 ∈ ℝ+ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑚) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lo1bdd2.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
2 | lo1bdd2.2 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
3 | lo1bdd2.3 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
4 | lo1bdd2.4 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1)) | |
5 | lo1bdd2.5 | . . 3 ⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝐶 ≤ 𝑦)) → 𝑀 ∈ ℝ) | |
6 | lo1bdd2.6 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ ((𝑦 ∈ ℝ ∧ 𝐶 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝐵 ≤ 𝑀) | |
7 | 1, 2, 3, 4, 5, 6 | lo1bdd2 14103 | . 2 ⊢ (𝜑 → ∃𝑛 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑛) |
8 | simpr 476 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ ℝ) → 𝑛 ∈ ℝ) | |
9 | 8 | recnd 9947 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℝ) → 𝑛 ∈ ℂ) |
10 | 9 | abscld 14023 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℝ) → (abs‘𝑛) ∈ ℝ) |
11 | 9 | absge0d 14031 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℝ) → 0 ≤ (abs‘𝑛)) |
12 | 10, 11 | ge0p1rpd 11778 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℝ) → ((abs‘𝑛) + 1) ∈ ℝ+) |
13 | simplr 788 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → 𝑛 ∈ ℝ) | |
14 | 10 | adantr 480 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → (abs‘𝑛) ∈ ℝ) |
15 | peano2re 10088 | . . . . . . . 8 ⊢ ((abs‘𝑛) ∈ ℝ → ((abs‘𝑛) + 1) ∈ ℝ) | |
16 | 14, 15 | syl 17 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → ((abs‘𝑛) + 1) ∈ ℝ) |
17 | 13 | leabsd 14001 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → 𝑛 ≤ (abs‘𝑛)) |
18 | 14 | lep1d 10834 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → (abs‘𝑛) ≤ ((abs‘𝑛) + 1)) |
19 | 13, 14, 16, 17, 18 | letrd 10073 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → 𝑛 ≤ ((abs‘𝑛) + 1)) |
20 | 3 | adantlr 747 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
21 | letr 10010 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ ((abs‘𝑛) + 1) ∈ ℝ) → ((𝐵 ≤ 𝑛 ∧ 𝑛 ≤ ((abs‘𝑛) + 1)) → 𝐵 ≤ ((abs‘𝑛) + 1))) | |
22 | 20, 13, 16, 21 | syl3anc 1318 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → ((𝐵 ≤ 𝑛 ∧ 𝑛 ≤ ((abs‘𝑛) + 1)) → 𝐵 ≤ ((abs‘𝑛) + 1))) |
23 | 19, 22 | mpan2d 706 | . . . . 5 ⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → (𝐵 ≤ 𝑛 → 𝐵 ≤ ((abs‘𝑛) + 1))) |
24 | 23 | ralimdva 2945 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℝ) → (∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑛 → ∀𝑥 ∈ 𝐴 𝐵 ≤ ((abs‘𝑛) + 1))) |
25 | breq2 4587 | . . . . . 6 ⊢ (𝑚 = ((abs‘𝑛) + 1) → (𝐵 ≤ 𝑚 ↔ 𝐵 ≤ ((abs‘𝑛) + 1))) | |
26 | 25 | ralbidv 2969 | . . . . 5 ⊢ (𝑚 = ((abs‘𝑛) + 1) → (∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑚 ↔ ∀𝑥 ∈ 𝐴 𝐵 ≤ ((abs‘𝑛) + 1))) |
27 | 26 | rspcev 3282 | . . . 4 ⊢ ((((abs‘𝑛) + 1) ∈ ℝ+ ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ ((abs‘𝑛) + 1)) → ∃𝑚 ∈ ℝ+ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑚) |
28 | 12, 24, 27 | syl6an 566 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ ℝ) → (∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑛 → ∃𝑚 ∈ ℝ+ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑚)) |
29 | 28 | rexlimdva 3013 | . 2 ⊢ (𝜑 → (∃𝑛 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑛 → ∃𝑚 ∈ ℝ+ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑚)) |
30 | 7, 29 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑚 ∈ ℝ+ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑚) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ∀wral 2896 ∃wrex 2897 ⊆ wss 3540 class class class wbr 4583 ↦ cmpt 4643 ‘cfv 5804 (class class class)co 6549 ℝcr 9814 1c1 9816 + caddc 9818 < clt 9953 ≤ cle 9954 ℝ+crp 11708 abscabs 13822 ≤𝑂(1)clo1 14066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 ax-pre-sup 9893 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-er 7629 df-pm 7747 df-en 7842 df-dom 7843 df-sdom 7844 df-sup 8231 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-div 10564 df-nn 10898 df-2 10956 df-3 10957 df-n0 11170 df-z 11255 df-uz 11564 df-rp 11709 df-ico 12052 df-seq 12664 df-exp 12723 df-cj 13687 df-re 13688 df-im 13689 df-sqrt 13823 df-abs 13824 df-lo1 14070 |
This theorem is referenced by: o1bddrp 14121 chpo1ubb 24970 pntrlog2bnd 25073 |
Copyright terms: Public domain | W3C validator |