Step | Hyp | Ref
| Expression |
1 | | ellnop 28101 |
. . . . . 6
⊢ (𝑇 ∈ LinOp ↔ (𝑇: ℋ⟶ ℋ ∧
∀𝑥 ∈ ℂ
∀𝑦 ∈ ℋ
∀𝑧 ∈ ℋ
(𝑇‘((𝑥
·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 ·ℎ (𝑇‘𝑦)) +ℎ (𝑇‘𝑧)))) |
2 | 1 | simprbi 479 |
. . . . 5
⊢ (𝑇 ∈ LinOp →
∀𝑥 ∈ ℂ
∀𝑦 ∈ ℋ
∀𝑧 ∈ ℋ
(𝑇‘((𝑥
·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 ·ℎ (𝑇‘𝑦)) +ℎ (𝑇‘𝑧))) |
3 | | oveq1 6556 |
. . . . . . . . 9
⊢ (𝑥 = 𝐴 → (𝑥 ·ℎ 𝑦) = (𝐴 ·ℎ 𝑦)) |
4 | 3 | oveq1d 6564 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → ((𝑥 ·ℎ 𝑦) +ℎ 𝑧) = ((𝐴 ·ℎ 𝑦) +ℎ 𝑧)) |
5 | 4 | fveq2d 6107 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → (𝑇‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = (𝑇‘((𝐴 ·ℎ 𝑦) +ℎ 𝑧))) |
6 | | oveq1 6556 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → (𝑥 ·ℎ (𝑇‘𝑦)) = (𝐴 ·ℎ (𝑇‘𝑦))) |
7 | 6 | oveq1d 6564 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → ((𝑥 ·ℎ (𝑇‘𝑦)) +ℎ (𝑇‘𝑧)) = ((𝐴 ·ℎ (𝑇‘𝑦)) +ℎ (𝑇‘𝑧))) |
8 | 5, 7 | eqeq12d 2625 |
. . . . . 6
⊢ (𝑥 = 𝐴 → ((𝑇‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 ·ℎ (𝑇‘𝑦)) +ℎ (𝑇‘𝑧)) ↔ (𝑇‘((𝐴 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝐴 ·ℎ (𝑇‘𝑦)) +ℎ (𝑇‘𝑧)))) |
9 | | oveq2 6557 |
. . . . . . . . 9
⊢ (𝑦 = 𝐵 → (𝐴 ·ℎ 𝑦) = (𝐴 ·ℎ 𝐵)) |
10 | 9 | oveq1d 6564 |
. . . . . . . 8
⊢ (𝑦 = 𝐵 → ((𝐴 ·ℎ 𝑦) +ℎ 𝑧) = ((𝐴 ·ℎ 𝐵) +ℎ 𝑧)) |
11 | 10 | fveq2d 6107 |
. . . . . . 7
⊢ (𝑦 = 𝐵 → (𝑇‘((𝐴 ·ℎ 𝑦) +ℎ 𝑧)) = (𝑇‘((𝐴 ·ℎ 𝐵) +ℎ 𝑧))) |
12 | | fveq2 6103 |
. . . . . . . . 9
⊢ (𝑦 = 𝐵 → (𝑇‘𝑦) = (𝑇‘𝐵)) |
13 | 12 | oveq2d 6565 |
. . . . . . . 8
⊢ (𝑦 = 𝐵 → (𝐴 ·ℎ (𝑇‘𝑦)) = (𝐴 ·ℎ (𝑇‘𝐵))) |
14 | 13 | oveq1d 6564 |
. . . . . . 7
⊢ (𝑦 = 𝐵 → ((𝐴 ·ℎ (𝑇‘𝑦)) +ℎ (𝑇‘𝑧)) = ((𝐴 ·ℎ (𝑇‘𝐵)) +ℎ (𝑇‘𝑧))) |
15 | 11, 14 | eqeq12d 2625 |
. . . . . 6
⊢ (𝑦 = 𝐵 → ((𝑇‘((𝐴 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝐴 ·ℎ (𝑇‘𝑦)) +ℎ (𝑇‘𝑧)) ↔ (𝑇‘((𝐴 ·ℎ 𝐵) +ℎ 𝑧)) = ((𝐴 ·ℎ (𝑇‘𝐵)) +ℎ (𝑇‘𝑧)))) |
16 | | oveq2 6557 |
. . . . . . . 8
⊢ (𝑧 = 𝐶 → ((𝐴 ·ℎ 𝐵) +ℎ 𝑧) = ((𝐴 ·ℎ 𝐵) +ℎ 𝐶)) |
17 | 16 | fveq2d 6107 |
. . . . . . 7
⊢ (𝑧 = 𝐶 → (𝑇‘((𝐴 ·ℎ 𝐵) +ℎ 𝑧)) = (𝑇‘((𝐴 ·ℎ 𝐵) +ℎ 𝐶))) |
18 | | fveq2 6103 |
. . . . . . . 8
⊢ (𝑧 = 𝐶 → (𝑇‘𝑧) = (𝑇‘𝐶)) |
19 | 18 | oveq2d 6565 |
. . . . . . 7
⊢ (𝑧 = 𝐶 → ((𝐴 ·ℎ (𝑇‘𝐵)) +ℎ (𝑇‘𝑧)) = ((𝐴 ·ℎ (𝑇‘𝐵)) +ℎ (𝑇‘𝐶))) |
20 | 17, 19 | eqeq12d 2625 |
. . . . . 6
⊢ (𝑧 = 𝐶 → ((𝑇‘((𝐴 ·ℎ 𝐵) +ℎ 𝑧)) = ((𝐴 ·ℎ (𝑇‘𝐵)) +ℎ (𝑇‘𝑧)) ↔ (𝑇‘((𝐴 ·ℎ 𝐵) +ℎ 𝐶)) = ((𝐴 ·ℎ (𝑇‘𝐵)) +ℎ (𝑇‘𝐶)))) |
21 | 8, 15, 20 | rspc3v 3296 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) →
(∀𝑥 ∈ ℂ
∀𝑦 ∈ ℋ
∀𝑧 ∈ ℋ
(𝑇‘((𝑥
·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 ·ℎ (𝑇‘𝑦)) +ℎ (𝑇‘𝑧)) → (𝑇‘((𝐴 ·ℎ 𝐵) +ℎ 𝐶)) = ((𝐴 ·ℎ (𝑇‘𝐵)) +ℎ (𝑇‘𝐶)))) |
22 | 2, 21 | syl5 33 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝑇 ∈ LinOp → (𝑇‘((𝐴 ·ℎ 𝐵) +ℎ 𝐶)) = ((𝐴 ·ℎ (𝑇‘𝐵)) +ℎ (𝑇‘𝐶)))) |
23 | 22 | 3expb 1258 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ)) → (𝑇 ∈ LinOp → (𝑇‘((𝐴 ·ℎ 𝐵) +ℎ 𝐶)) = ((𝐴 ·ℎ (𝑇‘𝐵)) +ℎ (𝑇‘𝐶)))) |
24 | 23 | impcom 445 |
. 2
⊢ ((𝑇 ∈ LinOp ∧ (𝐴 ∈ ℂ ∧ (𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ))) → (𝑇‘((𝐴 ·ℎ 𝐵) +ℎ 𝐶)) = ((𝐴 ·ℎ (𝑇‘𝐵)) +ℎ (𝑇‘𝐶))) |
25 | 24 | anassrs 678 |
1
⊢ (((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ) ∧ (𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ)) → (𝑇‘((𝐴 ·ℎ 𝐵) +ℎ 𝐶)) = ((𝐴 ·ℎ (𝑇‘𝐵)) +ℎ (𝑇‘𝐶))) |