HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnopeq0lem1 Structured version   Visualization version   GIF version

Theorem lnopeq0lem1 28248
Description: Lemma for lnopeq0i 28250. Apply the generalized polarization identity polid2i 27398 to the quadratic form ((𝑇𝑥), 𝑥). (Contributed by NM, 26-Jul-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnopeq0.1 𝑇 ∈ LinOp
lnopeq0lem1.2 𝐴 ∈ ℋ
lnopeq0lem1.3 𝐵 ∈ ℋ
Assertion
Ref Expression
lnopeq0lem1 ((𝑇𝐴) ·ih 𝐵) = (((((𝑇‘(𝐴 + 𝐵)) ·ih (𝐴 + 𝐵)) − ((𝑇‘(𝐴 𝐵)) ·ih (𝐴 𝐵))) + (i · (((𝑇‘(𝐴 + (i · 𝐵))) ·ih (𝐴 + (i · 𝐵))) − ((𝑇‘(𝐴 (i · 𝐵))) ·ih (𝐴 (i · 𝐵)))))) / 4)

Proof of Theorem lnopeq0lem1
StepHypRef Expression
1 lnopeq0lem1.2 . . . 4 𝐴 ∈ ℋ
2 lnopeq0.1 . . . . . 6 𝑇 ∈ LinOp
32lnopfi 28212 . . . . 5 𝑇: ℋ⟶ ℋ
43ffvelrni 6266 . . . 4 (𝐴 ∈ ℋ → (𝑇𝐴) ∈ ℋ)
51, 4ax-mp 5 . . 3 (𝑇𝐴) ∈ ℋ
6 lnopeq0lem1.3 . . 3 𝐵 ∈ ℋ
73ffvelrni 6266 . . . 4 (𝐵 ∈ ℋ → (𝑇𝐵) ∈ ℋ)
86, 7ax-mp 5 . . 3 (𝑇𝐵) ∈ ℋ
95, 6, 8, 1polid2i 27398 . 2 ((𝑇𝐴) ·ih 𝐵) = ((((((𝑇𝐴) + (𝑇𝐵)) ·ih (𝐴 + 𝐵)) − (((𝑇𝐴) − (𝑇𝐵)) ·ih (𝐴 𝐵))) + (i · ((((𝑇𝐴) + (i · (𝑇𝐵))) ·ih (𝐴 + (i · 𝐵))) − (((𝑇𝐴) − (i · (𝑇𝐵))) ·ih (𝐴 (i · 𝐵)))))) / 4)
102lnopaddi 28214 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 + 𝐵)) = ((𝑇𝐴) + (𝑇𝐵)))
111, 6, 10mp2an 704 . . . . . 6 (𝑇‘(𝐴 + 𝐵)) = ((𝑇𝐴) + (𝑇𝐵))
1211oveq1i 6559 . . . . 5 ((𝑇‘(𝐴 + 𝐵)) ·ih (𝐴 + 𝐵)) = (((𝑇𝐴) + (𝑇𝐵)) ·ih (𝐴 + 𝐵))
132lnopsubi 28217 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 𝐵)) = ((𝑇𝐴) − (𝑇𝐵)))
141, 6, 13mp2an 704 . . . . . 6 (𝑇‘(𝐴 𝐵)) = ((𝑇𝐴) − (𝑇𝐵))
1514oveq1i 6559 . . . . 5 ((𝑇‘(𝐴 𝐵)) ·ih (𝐴 𝐵)) = (((𝑇𝐴) − (𝑇𝐵)) ·ih (𝐴 𝐵))
1612, 15oveq12i 6561 . . . 4 (((𝑇‘(𝐴 + 𝐵)) ·ih (𝐴 + 𝐵)) − ((𝑇‘(𝐴 𝐵)) ·ih (𝐴 𝐵))) = ((((𝑇𝐴) + (𝑇𝐵)) ·ih (𝐴 + 𝐵)) − (((𝑇𝐴) − (𝑇𝐵)) ·ih (𝐴 𝐵)))
17 ax-icn 9874 . . . . . . . 8 i ∈ ℂ
182lnopaddmuli 28216 . . . . . . . 8 ((i ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 + (i · 𝐵))) = ((𝑇𝐴) + (i · (𝑇𝐵))))
1917, 1, 6, 18mp3an 1416 . . . . . . 7 (𝑇‘(𝐴 + (i · 𝐵))) = ((𝑇𝐴) + (i · (𝑇𝐵)))
2019oveq1i 6559 . . . . . 6 ((𝑇‘(𝐴 + (i · 𝐵))) ·ih (𝐴 + (i · 𝐵))) = (((𝑇𝐴) + (i · (𝑇𝐵))) ·ih (𝐴 + (i · 𝐵)))
212lnopsubmuli 28218 . . . . . . . 8 ((i ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 (i · 𝐵))) = ((𝑇𝐴) − (i · (𝑇𝐵))))
2217, 1, 6, 21mp3an 1416 . . . . . . 7 (𝑇‘(𝐴 (i · 𝐵))) = ((𝑇𝐴) − (i · (𝑇𝐵)))
2322oveq1i 6559 . . . . . 6 ((𝑇‘(𝐴 (i · 𝐵))) ·ih (𝐴 (i · 𝐵))) = (((𝑇𝐴) − (i · (𝑇𝐵))) ·ih (𝐴 (i · 𝐵)))
2420, 23oveq12i 6561 . . . . 5 (((𝑇‘(𝐴 + (i · 𝐵))) ·ih (𝐴 + (i · 𝐵))) − ((𝑇‘(𝐴 (i · 𝐵))) ·ih (𝐴 (i · 𝐵)))) = ((((𝑇𝐴) + (i · (𝑇𝐵))) ·ih (𝐴 + (i · 𝐵))) − (((𝑇𝐴) − (i · (𝑇𝐵))) ·ih (𝐴 (i · 𝐵))))
2524oveq2i 6560 . . . 4 (i · (((𝑇‘(𝐴 + (i · 𝐵))) ·ih (𝐴 + (i · 𝐵))) − ((𝑇‘(𝐴 (i · 𝐵))) ·ih (𝐴 (i · 𝐵))))) = (i · ((((𝑇𝐴) + (i · (𝑇𝐵))) ·ih (𝐴 + (i · 𝐵))) − (((𝑇𝐴) − (i · (𝑇𝐵))) ·ih (𝐴 (i · 𝐵)))))
2616, 25oveq12i 6561 . . 3 ((((𝑇‘(𝐴 + 𝐵)) ·ih (𝐴 + 𝐵)) − ((𝑇‘(𝐴 𝐵)) ·ih (𝐴 𝐵))) + (i · (((𝑇‘(𝐴 + (i · 𝐵))) ·ih (𝐴 + (i · 𝐵))) − ((𝑇‘(𝐴 (i · 𝐵))) ·ih (𝐴 (i · 𝐵)))))) = (((((𝑇𝐴) + (𝑇𝐵)) ·ih (𝐴 + 𝐵)) − (((𝑇𝐴) − (𝑇𝐵)) ·ih (𝐴 𝐵))) + (i · ((((𝑇𝐴) + (i · (𝑇𝐵))) ·ih (𝐴 + (i · 𝐵))) − (((𝑇𝐴) − (i · (𝑇𝐵))) ·ih (𝐴 (i · 𝐵))))))
2726oveq1i 6559 . 2 (((((𝑇‘(𝐴 + 𝐵)) ·ih (𝐴 + 𝐵)) − ((𝑇‘(𝐴 𝐵)) ·ih (𝐴 𝐵))) + (i · (((𝑇‘(𝐴 + (i · 𝐵))) ·ih (𝐴 + (i · 𝐵))) − ((𝑇‘(𝐴 (i · 𝐵))) ·ih (𝐴 (i · 𝐵)))))) / 4) = ((((((𝑇𝐴) + (𝑇𝐵)) ·ih (𝐴 + 𝐵)) − (((𝑇𝐴) − (𝑇𝐵)) ·ih (𝐴 𝐵))) + (i · ((((𝑇𝐴) + (i · (𝑇𝐵))) ·ih (𝐴 + (i · 𝐵))) − (((𝑇𝐴) − (i · (𝑇𝐵))) ·ih (𝐴 (i · 𝐵)))))) / 4)
289, 27eqtr4i 2635 1 ((𝑇𝐴) ·ih 𝐵) = (((((𝑇‘(𝐴 + 𝐵)) ·ih (𝐴 + 𝐵)) − ((𝑇‘(𝐴 𝐵)) ·ih (𝐴 𝐵))) + (i · (((𝑇‘(𝐴 + (i · 𝐵))) ·ih (𝐴 + (i · 𝐵))) − ((𝑇‘(𝐴 (i · 𝐵))) ·ih (𝐴 (i · 𝐵)))))) / 4)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1475  wcel 1977  cfv 5804  (class class class)co 6549  cc 9813  ici 9817   + caddc 9818   · cmul 9820  cmin 10145   / cdiv 10563  4c4 10949  chil 27160   + cva 27161   · csm 27162   ·ih csp 27163   cmv 27166  LinOpclo 27188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-hilex 27240  ax-hfvadd 27241  ax-hvass 27243  ax-hv0cl 27244  ax-hvaddid 27245  ax-hfvmul 27246  ax-hvmulid 27247  ax-hvdistr2 27250  ax-hvmul0 27251  ax-hfi 27320  ax-his1 27323  ax-his2 27324  ax-his3 27325
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-2 10956  df-3 10957  df-4 10958  df-cj 13687  df-re 13688  df-im 13689  df-hvsub 27212  df-lnop 28084
This theorem is referenced by:  lnopeq0lem2  28249
  Copyright terms: Public domain W3C validator