MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lnoadd Structured version   Visualization version   GIF version

Theorem lnoadd 26997
Description: Addition property of a linear operator. (Contributed by NM, 7-Dec-2007.) (Revised by Mario Carneiro, 19-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnoadd.1 𝑋 = (BaseSet‘𝑈)
lnoadd.5 𝐺 = ( +𝑣𝑈)
lnoadd.6 𝐻 = ( +𝑣𝑊)
lnoadd.7 𝐿 = (𝑈 LnOp 𝑊)
Assertion
Ref Expression
lnoadd (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → (𝑇‘(𝐴𝐺𝐵)) = ((𝑇𝐴)𝐻(𝑇𝐵)))

Proof of Theorem lnoadd
StepHypRef Expression
1 ax-1cn 9873 . . 3 1 ∈ ℂ
2 lnoadd.1 . . . 4 𝑋 = (BaseSet‘𝑈)
3 eqid 2610 . . . 4 (BaseSet‘𝑊) = (BaseSet‘𝑊)
4 lnoadd.5 . . . 4 𝐺 = ( +𝑣𝑈)
5 lnoadd.6 . . . 4 𝐻 = ( +𝑣𝑊)
6 eqid 2610 . . . 4 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
7 eqid 2610 . . . 4 ( ·𝑠OLD𝑊) = ( ·𝑠OLD𝑊)
8 lnoadd.7 . . . 4 𝐿 = (𝑈 LnOp 𝑊)
92, 3, 4, 5, 6, 7, 8lnolin 26993 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (1 ∈ ℂ ∧ 𝐴𝑋𝐵𝑋)) → (𝑇‘((1( ·𝑠OLD𝑈)𝐴)𝐺𝐵)) = ((1( ·𝑠OLD𝑊)(𝑇𝐴))𝐻(𝑇𝐵)))
101, 9mp3anr1 1413 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → (𝑇‘((1( ·𝑠OLD𝑈)𝐴)𝐺𝐵)) = ((1( ·𝑠OLD𝑊)(𝑇𝐴))𝐻(𝑇𝐵)))
11 simp1 1054 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑈 ∈ NrmCVec)
12 simpl 472 . . . . 5 ((𝐴𝑋𝐵𝑋) → 𝐴𝑋)
132, 6nvsid 26866 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (1( ·𝑠OLD𝑈)𝐴) = 𝐴)
1411, 12, 13syl2an 493 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → (1( ·𝑠OLD𝑈)𝐴) = 𝐴)
1514oveq1d 6564 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → ((1( ·𝑠OLD𝑈)𝐴)𝐺𝐵) = (𝐴𝐺𝐵))
1615fveq2d 6107 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → (𝑇‘((1( ·𝑠OLD𝑈)𝐴)𝐺𝐵)) = (𝑇‘(𝐴𝐺𝐵)))
17 simpl2 1058 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → 𝑊 ∈ NrmCVec)
182, 3, 8lnof 26994 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑇:𝑋⟶(BaseSet‘𝑊))
19 ffvelrn 6265 . . . . 5 ((𝑇:𝑋⟶(BaseSet‘𝑊) ∧ 𝐴𝑋) → (𝑇𝐴) ∈ (BaseSet‘𝑊))
2018, 12, 19syl2an 493 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → (𝑇𝐴) ∈ (BaseSet‘𝑊))
213, 7nvsid 26866 . . . 4 ((𝑊 ∈ NrmCVec ∧ (𝑇𝐴) ∈ (BaseSet‘𝑊)) → (1( ·𝑠OLD𝑊)(𝑇𝐴)) = (𝑇𝐴))
2217, 20, 21syl2anc 691 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → (1( ·𝑠OLD𝑊)(𝑇𝐴)) = (𝑇𝐴))
2322oveq1d 6564 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → ((1( ·𝑠OLD𝑊)(𝑇𝐴))𝐻(𝑇𝐵)) = ((𝑇𝐴)𝐻(𝑇𝐵)))
2410, 16, 233eqtr3d 2652 1 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → (𝑇‘(𝐴𝐺𝐵)) = ((𝑇𝐴)𝐻(𝑇𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wf 5800  cfv 5804  (class class class)co 6549  cc 9813  1c1 9816  NrmCVeccnv 26823   +𝑣 cpv 26824  BaseSetcba 26825   ·𝑠OLD cns 26826   LnOp clno 26979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-1cn 9873
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-map 7746  df-vc 26798  df-nv 26831  df-va 26834  df-ba 26835  df-sm 26836  df-0v 26837  df-nmcv 26839  df-lno 26983
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator