Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lmrel | Structured version Visualization version GIF version |
Description: The topological space convergence relation is a relation. (Contributed by NM, 7-Dec-2006.) (Revised by Mario Carneiro, 14-Nov-2013.) |
Ref | Expression |
---|---|
lmrel | ⊢ Rel (⇝𝑡‘𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lm 20843 | . 2 ⊢ ⇝𝑡 = (𝑗 ∈ Top ↦ {〈𝑓, 𝑥〉 ∣ (𝑓 ∈ (∪ 𝑗 ↑pm ℂ) ∧ 𝑥 ∈ ∪ 𝑗 ∧ ∀𝑢 ∈ 𝑗 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))}) | |
2 | 1 | relmptopab 6781 | 1 ⊢ Rel (⇝𝑡‘𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1031 ∈ wcel 1977 ∀wral 2896 ∃wrex 2897 ∪ cuni 4372 ran crn 5039 ↾ cres 5040 Rel wrel 5043 ⟶wf 5800 ‘cfv 5804 (class class class)co 6549 ↑pm cpm 7745 ℂcc 9813 ℤ≥cuz 11563 Topctop 20517 ⇝𝑡clm 20840 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fv 5812 df-lm 20843 |
This theorem is referenced by: lmfun 20995 cmetcaulem 22894 lmle 22907 heibor1lem 32778 rrncmslem 32801 |
Copyright terms: Public domain | W3C validator |