MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodpropd Structured version   Visualization version   GIF version

Theorem lmodpropd 18749
Description: If two structures have the same components (properties), one is a left module iff the other one is. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 27-Jun-2015.)
Hypotheses
Ref Expression
lmodpropd.1 (𝜑𝐵 = (Base‘𝐾))
lmodpropd.2 (𝜑𝐵 = (Base‘𝐿))
lmodpropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
lmodpropd.4 (𝜑𝐹 = (Scalar‘𝐾))
lmodpropd.5 (𝜑𝐹 = (Scalar‘𝐿))
lmodpropd.6 𝑃 = (Base‘𝐹)
lmodpropd.7 ((𝜑 ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) = (𝑥( ·𝑠𝐿)𝑦))
Assertion
Ref Expression
lmodpropd (𝜑 → (𝐾 ∈ LMod ↔ 𝐿 ∈ LMod))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝑥,𝑃,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem lmodpropd
StepHypRef Expression
1 lmodpropd.1 . 2 (𝜑𝐵 = (Base‘𝐾))
2 lmodpropd.2 . 2 (𝜑𝐵 = (Base‘𝐿))
3 eqid 2610 . 2 (Scalar‘𝐾) = (Scalar‘𝐾)
4 eqid 2610 . 2 (Scalar‘𝐿) = (Scalar‘𝐿)
5 lmodpropd.6 . . 3 𝑃 = (Base‘𝐹)
6 lmodpropd.4 . . . 4 (𝜑𝐹 = (Scalar‘𝐾))
76fveq2d 6107 . . 3 (𝜑 → (Base‘𝐹) = (Base‘(Scalar‘𝐾)))
85, 7syl5eq 2656 . 2 (𝜑𝑃 = (Base‘(Scalar‘𝐾)))
9 lmodpropd.5 . . . 4 (𝜑𝐹 = (Scalar‘𝐿))
109fveq2d 6107 . . 3 (𝜑 → (Base‘𝐹) = (Base‘(Scalar‘𝐿)))
115, 10syl5eq 2656 . 2 (𝜑𝑃 = (Base‘(Scalar‘𝐿)))
12 lmodpropd.3 . 2 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
136, 9eqtr3d 2646 . . . . 5 (𝜑 → (Scalar‘𝐾) = (Scalar‘𝐿))
1413adantr 480 . . . 4 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (Scalar‘𝐾) = (Scalar‘𝐿))
1514fveq2d 6107 . . 3 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (+g‘(Scalar‘𝐾)) = (+g‘(Scalar‘𝐿)))
1615oveqd 6566 . 2 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (𝑥(+g‘(Scalar‘𝐾))𝑦) = (𝑥(+g‘(Scalar‘𝐿))𝑦))
1714fveq2d 6107 . . 3 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (.r‘(Scalar‘𝐾)) = (.r‘(Scalar‘𝐿)))
1817oveqd 6566 . 2 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (𝑥(.r‘(Scalar‘𝐾))𝑦) = (𝑥(.r‘(Scalar‘𝐿))𝑦))
19 lmodpropd.7 . 2 ((𝜑 ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) = (𝑥( ·𝑠𝐿)𝑦))
201, 2, 3, 4, 8, 11, 12, 16, 18, 19lmodprop2d 18748 1 (𝜑 → (𝐾 ∈ LMod ↔ 𝐿 ∈ LMod))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  cfv 5804  (class class class)co 6549  Basecbs 15695  +gcplusg 15768  .rcmulr 15769  Scalarcsca 15771   ·𝑠 cvsca 15772  LModclmod 18686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-plusg 15781  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-mgp 18313  df-ur 18325  df-ring 18372  df-lmod 18688
This theorem is referenced by:  lmhmpropd  18894  lvecpropd  18988  assapropd  19148  opsrlmod  19437  matlmod  20054
  Copyright terms: Public domain W3C validator