Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lmodfopnelem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for lmodfopne 18724. (Contributed by AV, 2-Oct-2021.) |
Ref | Expression |
---|---|
lmodfopne.t | ⊢ · = ( ·sf ‘𝑊) |
lmodfopne.a | ⊢ + = (+𝑓‘𝑊) |
lmodfopne.v | ⊢ 𝑉 = (Base‘𝑊) |
lmodfopne.s | ⊢ 𝑆 = (Scalar‘𝑊) |
lmodfopne.k | ⊢ 𝐾 = (Base‘𝑆) |
Ref | Expression |
---|---|
lmodfopnelem1 | ⊢ ((𝑊 ∈ LMod ∧ + = · ) → 𝑉 = 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodfopne.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
2 | lmodfopne.s | . . . . 5 ⊢ 𝑆 = (Scalar‘𝑊) | |
3 | lmodfopne.k | . . . . 5 ⊢ 𝐾 = (Base‘𝑆) | |
4 | lmodfopne.t | . . . . 5 ⊢ · = ( ·sf ‘𝑊) | |
5 | 1, 2, 3, 4 | lmodscaf 18708 | . . . 4 ⊢ (𝑊 ∈ LMod → · :(𝐾 × 𝑉)⟶𝑉) |
6 | 5 | ffnd 5959 | . . 3 ⊢ (𝑊 ∈ LMod → · Fn (𝐾 × 𝑉)) |
7 | lmodfopne.a | . . . . 5 ⊢ + = (+𝑓‘𝑊) | |
8 | 1, 7 | plusffn 17073 | . . . 4 ⊢ + Fn (𝑉 × 𝑉) |
9 | fneq1 5893 | . . . . . . . . . . 11 ⊢ ( + = · → ( + Fn (𝑉 × 𝑉) ↔ · Fn (𝑉 × 𝑉))) | |
10 | fndmu 5906 | . . . . . . . . . . . 12 ⊢ (( · Fn (𝑉 × 𝑉) ∧ · Fn (𝐾 × 𝑉)) → (𝑉 × 𝑉) = (𝐾 × 𝑉)) | |
11 | 10 | ex 449 | . . . . . . . . . . 11 ⊢ ( · Fn (𝑉 × 𝑉) → ( · Fn (𝐾 × 𝑉) → (𝑉 × 𝑉) = (𝐾 × 𝑉))) |
12 | 9, 11 | syl6bi 242 | . . . . . . . . . 10 ⊢ ( + = · → ( + Fn (𝑉 × 𝑉) → ( · Fn (𝐾 × 𝑉) → (𝑉 × 𝑉) = (𝐾 × 𝑉)))) |
13 | 12 | com13 86 | . . . . . . . . 9 ⊢ ( · Fn (𝐾 × 𝑉) → ( + Fn (𝑉 × 𝑉) → ( + = · → (𝑉 × 𝑉) = (𝐾 × 𝑉)))) |
14 | 13 | impcom 445 | . . . . . . . 8 ⊢ (( + Fn (𝑉 × 𝑉) ∧ · Fn (𝐾 × 𝑉)) → ( + = · → (𝑉 × 𝑉) = (𝐾 × 𝑉))) |
15 | 1 | lmodbn0 18696 | . . . . . . . . . . 11 ⊢ (𝑊 ∈ LMod → 𝑉 ≠ ∅) |
16 | xp11 5488 | . . . . . . . . . . 11 ⊢ ((𝑉 ≠ ∅ ∧ 𝑉 ≠ ∅) → ((𝑉 × 𝑉) = (𝐾 × 𝑉) ↔ (𝑉 = 𝐾 ∧ 𝑉 = 𝑉))) | |
17 | 15, 15, 16 | syl2anc 691 | . . . . . . . . . 10 ⊢ (𝑊 ∈ LMod → ((𝑉 × 𝑉) = (𝐾 × 𝑉) ↔ (𝑉 = 𝐾 ∧ 𝑉 = 𝑉))) |
18 | 17 | simprbda 651 | . . . . . . . . 9 ⊢ ((𝑊 ∈ LMod ∧ (𝑉 × 𝑉) = (𝐾 × 𝑉)) → 𝑉 = 𝐾) |
19 | 18 | expcom 450 | . . . . . . . 8 ⊢ ((𝑉 × 𝑉) = (𝐾 × 𝑉) → (𝑊 ∈ LMod → 𝑉 = 𝐾)) |
20 | 14, 19 | syl6 34 | . . . . . . 7 ⊢ (( + Fn (𝑉 × 𝑉) ∧ · Fn (𝐾 × 𝑉)) → ( + = · → (𝑊 ∈ LMod → 𝑉 = 𝐾))) |
21 | 20 | com23 84 | . . . . . 6 ⊢ (( + Fn (𝑉 × 𝑉) ∧ · Fn (𝐾 × 𝑉)) → (𝑊 ∈ LMod → ( + = · → 𝑉 = 𝐾))) |
22 | 21 | ex 449 | . . . . 5 ⊢ ( + Fn (𝑉 × 𝑉) → ( · Fn (𝐾 × 𝑉) → (𝑊 ∈ LMod → ( + = · → 𝑉 = 𝐾)))) |
23 | 22 | com23 84 | . . . 4 ⊢ ( + Fn (𝑉 × 𝑉) → (𝑊 ∈ LMod → ( · Fn (𝐾 × 𝑉) → ( + = · → 𝑉 = 𝐾)))) |
24 | 8, 23 | ax-mp 5 | . . 3 ⊢ (𝑊 ∈ LMod → ( · Fn (𝐾 × 𝑉) → ( + = · → 𝑉 = 𝐾))) |
25 | 6, 24 | mpd 15 | . 2 ⊢ (𝑊 ∈ LMod → ( + = · → 𝑉 = 𝐾)) |
26 | 25 | imp 444 | 1 ⊢ ((𝑊 ∈ LMod ∧ + = · ) → 𝑉 = 𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ≠ wne 2780 ∅c0 3874 × cxp 5036 Fn wfn 5799 ‘cfv 5804 Basecbs 15695 Scalarcsca 15771 +𝑓cplusf 17062 LModclmod 18686 ·sf cscaf 18687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-1st 7059 df-2nd 7060 df-slot 15699 df-base 15700 df-0g 15925 df-plusf 17064 df-mgm 17065 df-sgrp 17107 df-mnd 17118 df-grp 17248 df-lmod 18688 df-scaf 18689 |
This theorem is referenced by: lmodfopnelem2 18723 |
Copyright terms: Public domain | W3C validator |