MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodfopne Structured version   Visualization version   GIF version

Theorem lmodfopne 18724
Description: The (functionalized) operations of a left module (over a nonzero ring) cannot be identical. (Contributed by NM, 31-May-2008.) (Revised by AV, 2-Oct-2021.)
Hypotheses
Ref Expression
lmodfopne.t · = ( ·sf𝑊)
lmodfopne.a + = (+𝑓𝑊)
lmodfopne.v 𝑉 = (Base‘𝑊)
lmodfopne.s 𝑆 = (Scalar‘𝑊)
lmodfopne.k 𝐾 = (Base‘𝑆)
lmodfopne.0 0 = (0g𝑆)
lmodfopne.1 1 = (1r𝑆)
Assertion
Ref Expression
lmodfopne ((𝑊 ∈ LMod ∧ 10 ) → +· )

Proof of Theorem lmodfopne
StepHypRef Expression
1 lmodfopne.t . . . . . 6 · = ( ·sf𝑊)
2 lmodfopne.a . . . . . 6 + = (+𝑓𝑊)
3 lmodfopne.v . . . . . 6 𝑉 = (Base‘𝑊)
4 lmodfopne.s . . . . . 6 𝑆 = (Scalar‘𝑊)
5 lmodfopne.k . . . . . 6 𝐾 = (Base‘𝑆)
6 lmodfopne.0 . . . . . 6 0 = (0g𝑆)
7 lmodfopne.1 . . . . . 6 1 = (1r𝑆)
81, 2, 3, 4, 5, 6, 7lmodfopnelem2 18723 . . . . 5 ((𝑊 ∈ LMod ∧ + = · ) → ( 0𝑉1𝑉))
9 simpl 472 . . . . . . . 8 (( 0𝑉1𝑉) → 0𝑉)
10 eqid 2610 . . . . . . . . . 10 (0g𝑊) = (0g𝑊)
113, 10lmod0vcl 18715 . . . . . . . . 9 (𝑊 ∈ LMod → (0g𝑊) ∈ 𝑉)
1211adantr 480 . . . . . . . 8 ((𝑊 ∈ LMod ∧ + = · ) → (0g𝑊) ∈ 𝑉)
13 eqid 2610 . . . . . . . . . 10 (+g𝑊) = (+g𝑊)
143, 13, 2plusfval 17071 . . . . . . . . 9 (( 0𝑉 ∧ (0g𝑊) ∈ 𝑉) → ( 0 + (0g𝑊)) = ( 0 (+g𝑊)(0g𝑊)))
1514eqcomd 2616 . . . . . . . 8 (( 0𝑉 ∧ (0g𝑊) ∈ 𝑉) → ( 0 (+g𝑊)(0g𝑊)) = ( 0 + (0g𝑊)))
169, 12, 15syl2anr 494 . . . . . . 7 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → ( 0 (+g𝑊)(0g𝑊)) = ( 0 + (0g𝑊)))
17 oveq 6555 . . . . . . . 8 ( + = · → ( 0 + (0g𝑊)) = ( 0 · (0g𝑊)))
1817ad2antlr 759 . . . . . . 7 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → ( 0 + (0g𝑊)) = ( 0 · (0g𝑊)))
1916, 18eqtrd 2644 . . . . . 6 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → ( 0 (+g𝑊)(0g𝑊)) = ( 0 · (0g𝑊)))
20 lmodgrp 18693 . . . . . . . 8 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
2120adantr 480 . . . . . . 7 ((𝑊 ∈ LMod ∧ + = · ) → 𝑊 ∈ Grp)
223, 13, 10grprid 17276 . . . . . . 7 ((𝑊 ∈ Grp ∧ 0𝑉) → ( 0 (+g𝑊)(0g𝑊)) = 0 )
2321, 9, 22syl2an 493 . . . . . 6 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → ( 0 (+g𝑊)(0g𝑊)) = 0 )
244, 5, 6lmod0cl 18712 . . . . . . . . . . 11 (𝑊 ∈ LMod → 0𝐾)
2524, 11jca 553 . . . . . . . . . 10 (𝑊 ∈ LMod → ( 0𝐾 ∧ (0g𝑊) ∈ 𝑉))
2625adantr 480 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ + = · ) → ( 0𝐾 ∧ (0g𝑊) ∈ 𝑉))
2726adantr 480 . . . . . . . 8 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → ( 0𝐾 ∧ (0g𝑊) ∈ 𝑉))
28 eqid 2610 . . . . . . . . 9 ( ·𝑠𝑊) = ( ·𝑠𝑊)
293, 4, 5, 1, 28scafval 18705 . . . . . . . 8 (( 0𝐾 ∧ (0g𝑊) ∈ 𝑉) → ( 0 · (0g𝑊)) = ( 0 ( ·𝑠𝑊)(0g𝑊)))
3027, 29syl 17 . . . . . . 7 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → ( 0 · (0g𝑊)) = ( 0 ( ·𝑠𝑊)(0g𝑊)))
3124ancli 572 . . . . . . . . . 10 (𝑊 ∈ LMod → (𝑊 ∈ LMod ∧ 0𝐾))
3231adantr 480 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ + = · ) → (𝑊 ∈ LMod ∧ 0𝐾))
3332adantr 480 . . . . . . . 8 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → (𝑊 ∈ LMod ∧ 0𝐾))
344, 28, 5, 10lmodvs0 18720 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 0𝐾) → ( 0 ( ·𝑠𝑊)(0g𝑊)) = (0g𝑊))
3533, 34syl 17 . . . . . . 7 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → ( 0 ( ·𝑠𝑊)(0g𝑊)) = (0g𝑊))
36 simpr 476 . . . . . . . . . 10 (( 0𝑉1𝑉) → 1𝑉)
373, 13, 10grprid 17276 . . . . . . . . . 10 ((𝑊 ∈ Grp ∧ 1𝑉) → ( 1 (+g𝑊)(0g𝑊)) = 1 )
3821, 36, 37syl2an 493 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → ( 1 (+g𝑊)(0g𝑊)) = 1 )
394, 5, 7lmod1cl 18713 . . . . . . . . . . . 12 (𝑊 ∈ LMod → 1𝐾)
4039adantr 480 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ + = · ) → 1𝐾)
413, 4, 5, 1, 28scafval 18705 . . . . . . . . . . 11 (( 1𝐾1𝑉) → ( 1 · 1 ) = ( 1 ( ·𝑠𝑊) 1 ))
4240, 36, 41syl2an 493 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → ( 1 · 1 ) = ( 1 ( ·𝑠𝑊) 1 ))
433, 4, 28, 7lmodvs1 18714 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ 1𝑉) → ( 1 ( ·𝑠𝑊) 1 ) = 1 )
4443ad2ant2rl 781 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → ( 1 ( ·𝑠𝑊) 1 ) = 1 )
4542, 44eqtrd 2644 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → ( 1 · 1 ) = 1 )
46 oveq 6555 . . . . . . . . . . . 12 ( + = · → ( 1 + 1 ) = ( 1 · 1 ))
4746eqcomd 2616 . . . . . . . . . . 11 ( + = · → ( 1 · 1 ) = ( 1 + 1 ))
4847ad2antlr 759 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → ( 1 · 1 ) = ( 1 + 1 ))
4936, 36jca 553 . . . . . . . . . . . 12 (( 0𝑉1𝑉) → ( 1𝑉1𝑉))
5049adantl 481 . . . . . . . . . . 11 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → ( 1𝑉1𝑉))
513, 13, 2plusfval 17071 . . . . . . . . . . 11 (( 1𝑉1𝑉) → ( 1 + 1 ) = ( 1 (+g𝑊) 1 ))
5250, 51syl 17 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → ( 1 + 1 ) = ( 1 (+g𝑊) 1 ))
5348, 52eqtrd 2644 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → ( 1 · 1 ) = ( 1 (+g𝑊) 1 ))
5438, 45, 533eqtr2d 2650 . . . . . . . 8 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → ( 1 (+g𝑊)(0g𝑊)) = ( 1 (+g𝑊) 1 ))
5521adantr 480 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → 𝑊 ∈ Grp)
5612adantr 480 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → (0g𝑊) ∈ 𝑉)
5736adantl 481 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → 1𝑉)
583, 13grplcan 17300 . . . . . . . . 9 ((𝑊 ∈ Grp ∧ ((0g𝑊) ∈ 𝑉1𝑉1𝑉)) → (( 1 (+g𝑊)(0g𝑊)) = ( 1 (+g𝑊) 1 ) ↔ (0g𝑊) = 1 ))
5955, 56, 57, 57, 58syl13anc 1320 . . . . . . . 8 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → (( 1 (+g𝑊)(0g𝑊)) = ( 1 (+g𝑊) 1 ) ↔ (0g𝑊) = 1 ))
6054, 59mpbid 221 . . . . . . 7 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → (0g𝑊) = 1 )
6130, 35, 603eqtrd 2648 . . . . . 6 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → ( 0 · (0g𝑊)) = 1 )
6219, 23, 613eqtr3rd 2653 . . . . 5 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → 1 = 0 )
638, 62mpdan 699 . . . 4 ((𝑊 ∈ LMod ∧ + = · ) → 1 = 0 )
6463ex 449 . . 3 (𝑊 ∈ LMod → ( + = ·1 = 0 ))
6564necon3d 2803 . 2 (𝑊 ∈ LMod → ( 10+· ))
6665imp 444 1 ((𝑊 ∈ LMod ∧ 10 ) → +· )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wne 2780  cfv 5804  (class class class)co 6549  Basecbs 15695  +gcplusg 15768  Scalarcsca 15771   ·𝑠 cvsca 15772  0gc0g 15923  +𝑓cplusf 17062  Grpcgrp 17245  1rcur 18324  LModclmod 18686   ·sf cscaf 18687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-plusg 15781  df-0g 15925  df-plusf 17064  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-mgp 18313  df-ur 18325  df-ring 18372  df-lmod 18688  df-scaf 18689
This theorem is referenced by:  clmopfne  22704
  Copyright terms: Public domain W3C validator