Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmod1zrnlvec Structured version   Visualization version   GIF version

Theorem lmod1zrnlvec 42077
Description: There is a (left) module (a zero module) which is not a (left) vector space. (Contributed by AV, 29-Apr-2019.)
Hypotheses
Ref Expression
lmod1zr.r 𝑅 = {⟨(Base‘ndx), {𝑍}⟩, ⟨(+g‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩, ⟨(.r‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩}
lmod1zr.m 𝑀 = ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), {⟨⟨𝑍, 𝐼⟩, 𝐼⟩}⟩})
Assertion
Ref Expression
lmod1zrnlvec ((𝐼𝑉𝑍𝑊) → 𝑀 ∉ LVec)

Proof of Theorem lmod1zrnlvec
StepHypRef Expression
1 lmod1zr.r . . . . . 6 𝑅 = {⟨(Base‘ndx), {𝑍}⟩, ⟨(+g‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩, ⟨(.r‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩}
2 tpex 6855 . . . . . 6 {⟨(Base‘ndx), {𝑍}⟩, ⟨(+g‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩, ⟨(.r‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩} ∈ V
31, 2eqeltri 2684 . . . . 5 𝑅 ∈ V
4 lmod1zr.m . . . . . 6 𝑀 = ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), {⟨⟨𝑍, 𝐼⟩, 𝐼⟩}⟩})
54lmodsca 15843 . . . . 5 (𝑅 ∈ V → 𝑅 = (Scalar‘𝑀))
63, 5mp1i 13 . . . 4 ((𝐼𝑉𝑍𝑊) → 𝑅 = (Scalar‘𝑀))
71rng1nnzr 19095 . . . . . . 7 (𝑍𝑊𝑅 ∉ NzRing)
8 df-nel 2783 . . . . . . 7 (𝑅 ∉ NzRing ↔ ¬ 𝑅 ∈ NzRing)
97, 8sylib 207 . . . . . 6 (𝑍𝑊 → ¬ 𝑅 ∈ NzRing)
10 drngnzr 19083 . . . . . 6 (𝑅 ∈ DivRing → 𝑅 ∈ NzRing)
119, 10nsyl 134 . . . . 5 (𝑍𝑊 → ¬ 𝑅 ∈ DivRing)
1211adantl 481 . . . 4 ((𝐼𝑉𝑍𝑊) → ¬ 𝑅 ∈ DivRing)
136, 12eqneltrrd 2708 . . 3 ((𝐼𝑉𝑍𝑊) → ¬ (Scalar‘𝑀) ∈ DivRing)
1413intnand 953 . 2 ((𝐼𝑉𝑍𝑊) → ¬ (𝑀 ∈ LMod ∧ (Scalar‘𝑀) ∈ DivRing))
15 df-nel 2783 . . 3 (𝑀 ∉ LVec ↔ ¬ 𝑀 ∈ LVec)
16 eqid 2610 . . . 4 (Scalar‘𝑀) = (Scalar‘𝑀)
1716islvec 18925 . . 3 (𝑀 ∈ LVec ↔ (𝑀 ∈ LMod ∧ (Scalar‘𝑀) ∈ DivRing))
1815, 17xchbinx 323 . 2 (𝑀 ∉ LVec ↔ ¬ (𝑀 ∈ LMod ∧ (Scalar‘𝑀) ∈ DivRing))
1914, 18sylibr 223 1 ((𝐼𝑉𝑍𝑊) → 𝑀 ∉ LVec)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1475  wcel 1977  wnel 2781  Vcvv 3173  cun 3538  {csn 4125  {ctp 4129  cop 4131  cfv 5804  ndxcnx 15692  Basecbs 15695  +gcplusg 15768  .rcmulr 15769  Scalarcsca 15771   ·𝑠 cvsca 15772  DivRingcdr 18570  LModclmod 18686  LVecclvec 18923  NzRingcnzr 19078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-fz 12198  df-hash 12980  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-mgp 18313  df-ur 18325  df-ring 18372  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-drng 18572  df-lvec 18924  df-nzr 19079
This theorem is referenced by:  lvecpsslmod  42090
  Copyright terms: Public domain W3C validator