Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lmle | Structured version Visualization version GIF version |
Description: If the distance from each member of a converging sequence to a given point is less than or equal to a given amount, so is the convergence value. (Contributed by NM, 23-Dec-2007.) (Proof shortened by Mario Carneiro, 1-May-2014.) |
Ref | Expression |
---|---|
lmle.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
lmle.3 | ⊢ 𝐽 = (MetOpen‘𝐷) |
lmle.4 | ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
lmle.6 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
lmle.7 | ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) |
lmle.8 | ⊢ (𝜑 → 𝑄 ∈ 𝑋) |
lmle.9 | ⊢ (𝜑 → 𝑅 ∈ ℝ*) |
lmle.10 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝑄𝐷(𝐹‘𝑘)) ≤ 𝑅) |
Ref | Expression |
---|---|
lmle | ⊢ (𝜑 → (𝑄𝐷𝑃) ≤ 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmle.1 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | lmle.4 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) | |
3 | lmle.3 | . . . . . 6 ⊢ 𝐽 = (MetOpen‘𝐷) | |
4 | 3 | mopntopon 22054 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
5 | 2, 4 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
6 | lmle.6 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
7 | lmrel 20844 | . . . . 5 ⊢ Rel (⇝𝑡‘𝐽) | |
8 | lmle.7 | . . . . 5 ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) | |
9 | releldm 5279 | . . . . 5 ⊢ ((Rel (⇝𝑡‘𝐽) ∧ 𝐹(⇝𝑡‘𝐽)𝑃) → 𝐹 ∈ dom (⇝𝑡‘𝐽)) | |
10 | 7, 8, 9 | sylancr 694 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ dom (⇝𝑡‘𝐽)) |
11 | 1, 5, 6, 10 | lmff 20915 | . . 3 ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋) |
12 | eqid 2610 | . . . 4 ⊢ (ℤ≥‘𝑗) = (ℤ≥‘𝑗) | |
13 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) → 𝐽 ∈ (TopOn‘𝑋)) |
14 | simprl 790 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) → 𝑗 ∈ 𝑍) | |
15 | 14, 1 | syl6eleq 2698 | . . . . 5 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) → 𝑗 ∈ (ℤ≥‘𝑀)) |
16 | eluzelz 11573 | . . . . 5 ⊢ (𝑗 ∈ (ℤ≥‘𝑀) → 𝑗 ∈ ℤ) | |
17 | 15, 16 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) → 𝑗 ∈ ℤ) |
18 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) → 𝐹(⇝𝑡‘𝐽)𝑃) |
19 | fvres 6117 | . . . . . . 7 ⊢ (𝑘 ∈ (ℤ≥‘𝑗) → ((𝐹 ↾ (ℤ≥‘𝑗))‘𝑘) = (𝐹‘𝑘)) | |
20 | 19 | adantl 481 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝐹 ↾ (ℤ≥‘𝑗))‘𝑘) = (𝐹‘𝑘)) |
21 | simprr 792 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) → (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋) | |
22 | 21 | ffvelrnda 6267 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝐹 ↾ (ℤ≥‘𝑗))‘𝑘) ∈ 𝑋) |
23 | 20, 22 | eqeltrrd 2689 | . . . . 5 ⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝐹‘𝑘) ∈ 𝑋) |
24 | 1 | uztrn2 11581 | . . . . . . 7 ⊢ ((𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ 𝑍) |
25 | 14, 24 | sylan 487 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ 𝑍) |
26 | lmle.10 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝑄𝐷(𝐹‘𝑘)) ≤ 𝑅) | |
27 | 26 | adantlr 747 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) ∧ 𝑘 ∈ 𝑍) → (𝑄𝐷(𝐹‘𝑘)) ≤ 𝑅) |
28 | 25, 27 | syldan 486 | . . . . 5 ⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝑄𝐷(𝐹‘𝑘)) ≤ 𝑅) |
29 | oveq2 6557 | . . . . . . 7 ⊢ (𝑥 = (𝐹‘𝑘) → (𝑄𝐷𝑥) = (𝑄𝐷(𝐹‘𝑘))) | |
30 | 29 | breq1d 4593 | . . . . . 6 ⊢ (𝑥 = (𝐹‘𝑘) → ((𝑄𝐷𝑥) ≤ 𝑅 ↔ (𝑄𝐷(𝐹‘𝑘)) ≤ 𝑅)) |
31 | 30 | elrab 3331 | . . . . 5 ⊢ ((𝐹‘𝑘) ∈ {𝑥 ∈ 𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅} ↔ ((𝐹‘𝑘) ∈ 𝑋 ∧ (𝑄𝐷(𝐹‘𝑘)) ≤ 𝑅)) |
32 | 23, 28, 31 | sylanbrc 695 | . . . 4 ⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝐹‘𝑘) ∈ {𝑥 ∈ 𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅}) |
33 | lmle.8 | . . . . . 6 ⊢ (𝜑 → 𝑄 ∈ 𝑋) | |
34 | lmle.9 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ ℝ*) | |
35 | eqid 2610 | . . . . . . 7 ⊢ {𝑥 ∈ 𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅} = {𝑥 ∈ 𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅} | |
36 | 3, 35 | blcld 22120 | . . . . . 6 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑄 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → {𝑥 ∈ 𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅} ∈ (Clsd‘𝐽)) |
37 | 2, 33, 34, 36 | syl3anc 1318 | . . . . 5 ⊢ (𝜑 → {𝑥 ∈ 𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅} ∈ (Clsd‘𝐽)) |
38 | 37 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) → {𝑥 ∈ 𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅} ∈ (Clsd‘𝐽)) |
39 | 12, 13, 17, 18, 32, 38 | lmcld 20917 | . . 3 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) → 𝑃 ∈ {𝑥 ∈ 𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅}) |
40 | 11, 39 | rexlimddv 3017 | . 2 ⊢ (𝜑 → 𝑃 ∈ {𝑥 ∈ 𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅}) |
41 | oveq2 6557 | . . . . 5 ⊢ (𝑥 = 𝑃 → (𝑄𝐷𝑥) = (𝑄𝐷𝑃)) | |
42 | 41 | breq1d 4593 | . . . 4 ⊢ (𝑥 = 𝑃 → ((𝑄𝐷𝑥) ≤ 𝑅 ↔ (𝑄𝐷𝑃) ≤ 𝑅)) |
43 | 42 | elrab 3331 | . . 3 ⊢ (𝑃 ∈ {𝑥 ∈ 𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅} ↔ (𝑃 ∈ 𝑋 ∧ (𝑄𝐷𝑃) ≤ 𝑅)) |
44 | 43 | simprbi 479 | . 2 ⊢ (𝑃 ∈ {𝑥 ∈ 𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅} → (𝑄𝐷𝑃) ≤ 𝑅) |
45 | 40, 44 | syl 17 | 1 ⊢ (𝜑 → (𝑄𝐷𝑃) ≤ 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 {crab 2900 class class class wbr 4583 dom cdm 5038 ↾ cres 5040 Rel wrel 5043 ⟶wf 5800 ‘cfv 5804 (class class class)co 6549 ℝ*cxr 9952 ≤ cle 9954 ℤcz 11254 ℤ≥cuz 11563 ∞Metcxmt 19552 MetOpencmopn 19557 TopOnctopon 20518 Clsdccld 20630 ⇝𝑡clm 20840 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 ax-pre-sup 9893 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-iin 4458 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-er 7629 df-map 7746 df-pm 7747 df-en 7842 df-dom 7843 df-sdom 7844 df-sup 8231 df-inf 8232 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-div 10564 df-nn 10898 df-2 10956 df-n0 11170 df-z 11255 df-uz 11564 df-q 11665 df-rp 11709 df-xneg 11822 df-xadd 11823 df-xmul 11824 df-topgen 15927 df-psmet 19559 df-xmet 19560 df-bl 19562 df-mopn 19563 df-top 20521 df-bases 20522 df-topon 20523 df-cld 20633 df-ntr 20634 df-cls 20635 df-lm 20843 |
This theorem is referenced by: nglmle 22908 minvecolem4 27120 |
Copyright terms: Public domain | W3C validator |