MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmimlbs Structured version   Visualization version   GIF version

Theorem lmimlbs 19994
Description: The isomorphic image of a basis is a basis. (Contributed by Stefan O'Rear, 26-Feb-2015.)
Hypotheses
Ref Expression
lmimlbs.j 𝐽 = (LBasis‘𝑆)
lmimlbs.k 𝐾 = (LBasis‘𝑇)
Assertion
Ref Expression
lmimlbs ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵𝐽) → (𝐹𝐵) ∈ 𝐾)

Proof of Theorem lmimlbs
StepHypRef Expression
1 lmimlmhm 18885 . . . 4 (𝐹 ∈ (𝑆 LMIso 𝑇) → 𝐹 ∈ (𝑆 LMHom 𝑇))
21adantr 480 . . 3 ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵𝐽) → 𝐹 ∈ (𝑆 LMHom 𝑇))
3 eqid 2610 . . . . . 6 (Base‘𝑆) = (Base‘𝑆)
4 eqid 2610 . . . . . 6 (Base‘𝑇) = (Base‘𝑇)
53, 4lmimf1o 18884 . . . . 5 (𝐹 ∈ (𝑆 LMIso 𝑇) → 𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇))
6 f1of1 6049 . . . . 5 (𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇) → 𝐹:(Base‘𝑆)–1-1→(Base‘𝑇))
75, 6syl 17 . . . 4 (𝐹 ∈ (𝑆 LMIso 𝑇) → 𝐹:(Base‘𝑆)–1-1→(Base‘𝑇))
87adantr 480 . . 3 ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵𝐽) → 𝐹:(Base‘𝑆)–1-1→(Base‘𝑇))
9 lmimlbs.j . . . . . 6 𝐽 = (LBasis‘𝑆)
109lbslinds 19991 . . . . 5 𝐽 ⊆ (LIndS‘𝑆)
1110sseli 3564 . . . 4 (𝐵𝐽𝐵 ∈ (LIndS‘𝑆))
1211adantl 481 . . 3 ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵𝐽) → 𝐵 ∈ (LIndS‘𝑆))
133, 4lindsmm2 19987 . . 3 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:(Base‘𝑆)–1-1→(Base‘𝑇) ∧ 𝐵 ∈ (LIndS‘𝑆)) → (𝐹𝐵) ∈ (LIndS‘𝑇))
142, 8, 12, 13syl3anc 1318 . 2 ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵𝐽) → (𝐹𝐵) ∈ (LIndS‘𝑇))
15 eqid 2610 . . . . . 6 (LSpan‘𝑆) = (LSpan‘𝑆)
163, 9, 15lbssp 18900 . . . . 5 (𝐵𝐽 → ((LSpan‘𝑆)‘𝐵) = (Base‘𝑆))
1716adantl 481 . . . 4 ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵𝐽) → ((LSpan‘𝑆)‘𝐵) = (Base‘𝑆))
1817imaeq2d 5385 . . 3 ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵𝐽) → (𝐹 “ ((LSpan‘𝑆)‘𝐵)) = (𝐹 “ (Base‘𝑆)))
193, 9lbsss 18898 . . . 4 (𝐵𝐽𝐵 ⊆ (Base‘𝑆))
20 eqid 2610 . . . . 5 (LSpan‘𝑇) = (LSpan‘𝑇)
213, 15, 20lmhmlsp 18870 . . . 4 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐵 ⊆ (Base‘𝑆)) → (𝐹 “ ((LSpan‘𝑆)‘𝐵)) = ((LSpan‘𝑇)‘(𝐹𝐵)))
221, 19, 21syl2an 493 . . 3 ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵𝐽) → (𝐹 “ ((LSpan‘𝑆)‘𝐵)) = ((LSpan‘𝑇)‘(𝐹𝐵)))
235adantr 480 . . . 4 ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵𝐽) → 𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇))
24 f1ofo 6057 . . . 4 (𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇) → 𝐹:(Base‘𝑆)–onto→(Base‘𝑇))
25 foima 6033 . . . 4 (𝐹:(Base‘𝑆)–onto→(Base‘𝑇) → (𝐹 “ (Base‘𝑆)) = (Base‘𝑇))
2623, 24, 253syl 18 . . 3 ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵𝐽) → (𝐹 “ (Base‘𝑆)) = (Base‘𝑇))
2718, 22, 263eqtr3d 2652 . 2 ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵𝐽) → ((LSpan‘𝑇)‘(𝐹𝐵)) = (Base‘𝑇))
28 lmimlbs.k . . 3 𝐾 = (LBasis‘𝑇)
294, 28, 20islbs4 19990 . 2 ((𝐹𝐵) ∈ 𝐾 ↔ ((𝐹𝐵) ∈ (LIndS‘𝑇) ∧ ((LSpan‘𝑇)‘(𝐹𝐵)) = (Base‘𝑇)))
3014, 27, 29sylanbrc 695 1 ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵𝐽) → (𝐹𝐵) ∈ 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wss 3540  cima 5041  1-1wf1 5801  ontowfo 5802  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549  Basecbs 15695  LSpanclspn 18792   LMHom clmhm 18840   LMIso clmim 18841  LBasisclbs 18895  LIndSclinds 19963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-sbg 17250  df-subg 17414  df-ghm 17481  df-mgp 18313  df-ur 18325  df-ring 18372  df-lmod 18688  df-lss 18754  df-lsp 18793  df-lmhm 18843  df-lmim 18844  df-lbs 18896  df-lindf 19964  df-linds 19965
This theorem is referenced by:  lmiclbs  19995
  Copyright terms: Public domain W3C validator