Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmhmfgima Structured version   Visualization version   GIF version

Theorem lmhmfgima 36672
Description: A homomorphism maps finitely generated submodules to finitely generated submodules. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypotheses
Ref Expression
lmhmfgima.y 𝑌 = (𝑇s (𝐹𝐴))
lmhmfgima.x 𝑋 = (𝑆s 𝐴)
lmhmfgima.u 𝑈 = (LSubSp‘𝑆)
lmhmfgima.xf (𝜑𝑋 ∈ LFinGen)
lmhmfgima.a (𝜑𝐴𝑈)
lmhmfgima.f (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))
Assertion
Ref Expression
lmhmfgima (𝜑𝑌 ∈ LFinGen)

Proof of Theorem lmhmfgima
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 lmhmfgima.y . 2 𝑌 = (𝑇s (𝐹𝐴))
2 lmhmfgima.xf . . . 4 (𝜑𝑋 ∈ LFinGen)
3 lmhmfgima.f . . . . . 6 (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))
4 lmhmlmod1 18854 . . . . . 6 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod)
53, 4syl 17 . . . . 5 (𝜑𝑆 ∈ LMod)
6 lmhmfgima.a . . . . 5 (𝜑𝐴𝑈)
7 lmhmfgima.x . . . . . 6 𝑋 = (𝑆s 𝐴)
8 lmhmfgima.u . . . . . 6 𝑈 = (LSubSp‘𝑆)
9 eqid 2610 . . . . . 6 (LSpan‘𝑆) = (LSpan‘𝑆)
10 eqid 2610 . . . . . 6 (Base‘𝑆) = (Base‘𝑆)
117, 8, 9, 10islssfg2 36659 . . . . 5 ((𝑆 ∈ LMod ∧ 𝐴𝑈) → (𝑋 ∈ LFinGen ↔ ∃𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)((LSpan‘𝑆)‘𝑥) = 𝐴))
125, 6, 11syl2anc 691 . . . 4 (𝜑 → (𝑋 ∈ LFinGen ↔ ∃𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)((LSpan‘𝑆)‘𝑥) = 𝐴))
132, 12mpbid 221 . . 3 (𝜑 → ∃𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)((LSpan‘𝑆)‘𝑥) = 𝐴)
14 inss1 3795 . . . . . . . . . 10 (𝒫 (Base‘𝑆) ∩ Fin) ⊆ 𝒫 (Base‘𝑆)
1514sseli 3564 . . . . . . . . 9 (𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin) → 𝑥 ∈ 𝒫 (Base‘𝑆))
1615elpwid 4118 . . . . . . . 8 (𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin) → 𝑥 ⊆ (Base‘𝑆))
17 eqid 2610 . . . . . . . . 9 (LSpan‘𝑇) = (LSpan‘𝑇)
1810, 9, 17lmhmlsp 18870 . . . . . . . 8 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑥 ⊆ (Base‘𝑆)) → (𝐹 “ ((LSpan‘𝑆)‘𝑥)) = ((LSpan‘𝑇)‘(𝐹𝑥)))
193, 16, 18syl2an 493 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → (𝐹 “ ((LSpan‘𝑆)‘𝑥)) = ((LSpan‘𝑇)‘(𝐹𝑥)))
2019oveq2d 6565 . . . . . 6 ((𝜑𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → (𝑇s (𝐹 “ ((LSpan‘𝑆)‘𝑥))) = (𝑇s ((LSpan‘𝑇)‘(𝐹𝑥))))
21 lmhmlmod2 18853 . . . . . . . . 9 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod)
223, 21syl 17 . . . . . . . 8 (𝜑𝑇 ∈ LMod)
2322adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → 𝑇 ∈ LMod)
24 imassrn 5396 . . . . . . . . 9 (𝐹𝑥) ⊆ ran 𝐹
25 eqid 2610 . . . . . . . . . . . 12 (Base‘𝑇) = (Base‘𝑇)
2610, 25lmhmf 18855 . . . . . . . . . . 11 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
273, 26syl 17 . . . . . . . . . 10 (𝜑𝐹:(Base‘𝑆)⟶(Base‘𝑇))
28 frn 5966 . . . . . . . . . 10 (𝐹:(Base‘𝑆)⟶(Base‘𝑇) → ran 𝐹 ⊆ (Base‘𝑇))
2927, 28syl 17 . . . . . . . . 9 (𝜑 → ran 𝐹 ⊆ (Base‘𝑇))
3024, 29syl5ss 3579 . . . . . . . 8 (𝜑 → (𝐹𝑥) ⊆ (Base‘𝑇))
3130adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → (𝐹𝑥) ⊆ (Base‘𝑇))
32 inss2 3796 . . . . . . . . . 10 (𝒫 (Base‘𝑆) ∩ Fin) ⊆ Fin
3332sseli 3564 . . . . . . . . 9 (𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin) → 𝑥 ∈ Fin)
3433adantl 481 . . . . . . . 8 ((𝜑𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → 𝑥 ∈ Fin)
35 ffun 5961 . . . . . . . . . . 11 (𝐹:(Base‘𝑆)⟶(Base‘𝑇) → Fun 𝐹)
3627, 35syl 17 . . . . . . . . . 10 (𝜑 → Fun 𝐹)
3736adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → Fun 𝐹)
3816adantl 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → 𝑥 ⊆ (Base‘𝑆))
39 fdm 5964 . . . . . . . . . . . 12 (𝐹:(Base‘𝑆)⟶(Base‘𝑇) → dom 𝐹 = (Base‘𝑆))
4027, 39syl 17 . . . . . . . . . . 11 (𝜑 → dom 𝐹 = (Base‘𝑆))
4140adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → dom 𝐹 = (Base‘𝑆))
4238, 41sseqtr4d 3605 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → 𝑥 ⊆ dom 𝐹)
43 fores 6037 . . . . . . . . 9 ((Fun 𝐹𝑥 ⊆ dom 𝐹) → (𝐹𝑥):𝑥onto→(𝐹𝑥))
4437, 42, 43syl2anc 691 . . . . . . . 8 ((𝜑𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → (𝐹𝑥):𝑥onto→(𝐹𝑥))
45 fofi 8135 . . . . . . . 8 ((𝑥 ∈ Fin ∧ (𝐹𝑥):𝑥onto→(𝐹𝑥)) → (𝐹𝑥) ∈ Fin)
4634, 44, 45syl2anc 691 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → (𝐹𝑥) ∈ Fin)
47 eqid 2610 . . . . . . . 8 (𝑇s ((LSpan‘𝑇)‘(𝐹𝑥))) = (𝑇s ((LSpan‘𝑇)‘(𝐹𝑥)))
4817, 25, 47islssfgi 36660 . . . . . . 7 ((𝑇 ∈ LMod ∧ (𝐹𝑥) ⊆ (Base‘𝑇) ∧ (𝐹𝑥) ∈ Fin) → (𝑇s ((LSpan‘𝑇)‘(𝐹𝑥))) ∈ LFinGen)
4923, 31, 46, 48syl3anc 1318 . . . . . 6 ((𝜑𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → (𝑇s ((LSpan‘𝑇)‘(𝐹𝑥))) ∈ LFinGen)
5020, 49eqeltrd 2688 . . . . 5 ((𝜑𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → (𝑇s (𝐹 “ ((LSpan‘𝑆)‘𝑥))) ∈ LFinGen)
51 imaeq2 5381 . . . . . . 7 (((LSpan‘𝑆)‘𝑥) = 𝐴 → (𝐹 “ ((LSpan‘𝑆)‘𝑥)) = (𝐹𝐴))
5251oveq2d 6565 . . . . . 6 (((LSpan‘𝑆)‘𝑥) = 𝐴 → (𝑇s (𝐹 “ ((LSpan‘𝑆)‘𝑥))) = (𝑇s (𝐹𝐴)))
5352eleq1d 2672 . . . . 5 (((LSpan‘𝑆)‘𝑥) = 𝐴 → ((𝑇s (𝐹 “ ((LSpan‘𝑆)‘𝑥))) ∈ LFinGen ↔ (𝑇s (𝐹𝐴)) ∈ LFinGen))
5450, 53syl5ibcom 234 . . . 4 ((𝜑𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → (((LSpan‘𝑆)‘𝑥) = 𝐴 → (𝑇s (𝐹𝐴)) ∈ LFinGen))
5554rexlimdva 3013 . . 3 (𝜑 → (∃𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)((LSpan‘𝑆)‘𝑥) = 𝐴 → (𝑇s (𝐹𝐴)) ∈ LFinGen))
5613, 55mpd 15 . 2 (𝜑 → (𝑇s (𝐹𝐴)) ∈ LFinGen)
571, 56syl5eqel 2692 1 (𝜑𝑌 ∈ LFinGen)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wrex 2897  cin 3539  wss 3540  𝒫 cpw 4108  dom cdm 5038  ran crn 5039  cres 5040  cima 5041  Fun wfun 5798  wf 5800  ontowfo 5802  cfv 5804  (class class class)co 6549  Fincfn 7841  Basecbs 15695  s cress 15696  LModclmod 18686  LSubSpclss 18753  LSpanclspn 18792   LMHom clmhm 18840  LFinGenclfig 36655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-sca 15784  df-vsca 15785  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-sbg 17250  df-subg 17414  df-ghm 17481  df-mgp 18313  df-ur 18325  df-ring 18372  df-lmod 18688  df-lss 18754  df-lsp 18793  df-lmhm 18843  df-lfig 36656
This theorem is referenced by:  lnmepi  36673
  Copyright terms: Public domain W3C validator