MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmfval Structured version   Visualization version   GIF version

Theorem lmfval 20846
Description: The relation "sequence 𝑓 converges to point 𝑦 " in a metric space. (Contributed by NM, 7-Sep-2006.) (Revised by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
lmfval (𝐽 ∈ (TopOn‘𝑋) → (⇝𝑡𝐽) = {⟨𝑓, 𝑥⟩ ∣ (𝑓 ∈ (𝑋pm ℂ) ∧ 𝑥𝑋 ∧ ∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))})
Distinct variable groups:   𝑦,𝑓,𝑥,𝑋   𝑢,𝑓,𝐽,𝑥,𝑦
Allowed substitution hint:   𝑋(𝑢)

Proof of Theorem lmfval
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 df-lm 20843 . . 3 𝑡 = (𝑗 ∈ Top ↦ {⟨𝑓, 𝑥⟩ ∣ (𝑓 ∈ ( 𝑗pm ℂ) ∧ 𝑥 𝑗 ∧ ∀𝑢𝑗 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))})
21a1i 11 . 2 (𝐽 ∈ (TopOn‘𝑋) → ⇝𝑡 = (𝑗 ∈ Top ↦ {⟨𝑓, 𝑥⟩ ∣ (𝑓 ∈ ( 𝑗pm ℂ) ∧ 𝑥 𝑗 ∧ ∀𝑢𝑗 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))}))
3 simpr 476 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑗 = 𝐽) → 𝑗 = 𝐽)
43unieqd 4382 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑗 = 𝐽) → 𝑗 = 𝐽)
5 toponuni 20542 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
65adantr 480 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑗 = 𝐽) → 𝑋 = 𝐽)
74, 6eqtr4d 2647 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑗 = 𝐽) → 𝑗 = 𝑋)
87oveq1d 6564 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑗 = 𝐽) → ( 𝑗pm ℂ) = (𝑋pm ℂ))
98eleq2d 2673 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑗 = 𝐽) → (𝑓 ∈ ( 𝑗pm ℂ) ↔ 𝑓 ∈ (𝑋pm ℂ)))
107eleq2d 2673 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑗 = 𝐽) → (𝑥 𝑗𝑥𝑋))
113raleqdv 3121 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑗 = 𝐽) → (∀𝑢𝑗 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢) ↔ ∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢)))
129, 10, 113anbi123d 1391 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑗 = 𝐽) → ((𝑓 ∈ ( 𝑗pm ℂ) ∧ 𝑥 𝑗 ∧ ∀𝑢𝑗 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢)) ↔ (𝑓 ∈ (𝑋pm ℂ) ∧ 𝑥𝑋 ∧ ∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))))
1312opabbidv 4648 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑗 = 𝐽) → {⟨𝑓, 𝑥⟩ ∣ (𝑓 ∈ ( 𝑗pm ℂ) ∧ 𝑥 𝑗 ∧ ∀𝑢𝑗 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))} = {⟨𝑓, 𝑥⟩ ∣ (𝑓 ∈ (𝑋pm ℂ) ∧ 𝑥𝑋 ∧ ∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))})
14 topontop 20541 . 2 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
15 df-3an 1033 . . . . 5 ((𝑓 ∈ (𝑋pm ℂ) ∧ 𝑥𝑋 ∧ ∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢)) ↔ ((𝑓 ∈ (𝑋pm ℂ) ∧ 𝑥𝑋) ∧ ∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢)))
1615opabbii 4649 . . . 4 {⟨𝑓, 𝑥⟩ ∣ (𝑓 ∈ (𝑋pm ℂ) ∧ 𝑥𝑋 ∧ ∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))} = {⟨𝑓, 𝑥⟩ ∣ ((𝑓 ∈ (𝑋pm ℂ) ∧ 𝑥𝑋) ∧ ∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))}
17 opabssxp 5116 . . . 4 {⟨𝑓, 𝑥⟩ ∣ ((𝑓 ∈ (𝑋pm ℂ) ∧ 𝑥𝑋) ∧ ∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))} ⊆ ((𝑋pm ℂ) × 𝑋)
1816, 17eqsstri 3598 . . 3 {⟨𝑓, 𝑥⟩ ∣ (𝑓 ∈ (𝑋pm ℂ) ∧ 𝑥𝑋 ∧ ∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))} ⊆ ((𝑋pm ℂ) × 𝑋)
19 ovex 6577 . . . 4 (𝑋pm ℂ) ∈ V
20 toponmax 20543 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
21 xpexg 6858 . . . 4 (((𝑋pm ℂ) ∈ V ∧ 𝑋𝐽) → ((𝑋pm ℂ) × 𝑋) ∈ V)
2219, 20, 21sylancr 694 . . 3 (𝐽 ∈ (TopOn‘𝑋) → ((𝑋pm ℂ) × 𝑋) ∈ V)
23 ssexg 4732 . . 3 (({⟨𝑓, 𝑥⟩ ∣ (𝑓 ∈ (𝑋pm ℂ) ∧ 𝑥𝑋 ∧ ∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))} ⊆ ((𝑋pm ℂ) × 𝑋) ∧ ((𝑋pm ℂ) × 𝑋) ∈ V) → {⟨𝑓, 𝑥⟩ ∣ (𝑓 ∈ (𝑋pm ℂ) ∧ 𝑥𝑋 ∧ ∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))} ∈ V)
2418, 22, 23sylancr 694 . 2 (𝐽 ∈ (TopOn‘𝑋) → {⟨𝑓, 𝑥⟩ ∣ (𝑓 ∈ (𝑋pm ℂ) ∧ 𝑥𝑋 ∧ ∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))} ∈ V)
252, 13, 14, 24fvmptd 6197 1 (𝐽 ∈ (TopOn‘𝑋) → (⇝𝑡𝐽) = {⟨𝑓, 𝑥⟩ ∣ (𝑓 ∈ (𝑋pm ℂ) ∧ 𝑥𝑋 ∧ ∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  wrex 2897  Vcvv 3173  wss 3540   cuni 4372  {copab 4642  cmpt 4643   × cxp 5036  ran crn 5039  cres 5040  wf 5800  cfv 5804  (class class class)co 6549  pm cpm 7745  cc 9813  cuz 11563  Topctop 20517  TopOnctopon 20518  𝑡clm 20840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552  df-top 20521  df-topon 20523  df-lm 20843
This theorem is referenced by:  lmbr  20872  sslm  20913
  Copyright terms: Public domain W3C validator