Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  llnnleat Structured version   Visualization version   GIF version

Theorem llnnleat 33817
Description: An atom cannot majorize a lattice line. (Contributed by NM, 8-Jul-2012.)
Hypotheses
Ref Expression
llnnleat.l = (le‘𝐾)
llnnleat.a 𝐴 = (Atoms‘𝐾)
llnnleat.n 𝑁 = (LLines‘𝐾)
Assertion
Ref Expression
llnnleat ((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) → ¬ 𝑋 𝑃)

Proof of Theorem llnnleat
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 simp2 1055 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) → 𝑋𝑁)
2 eqid 2610 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
3 eqid 2610 . . . . . 6 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
4 llnnleat.a . . . . . 6 𝐴 = (Atoms‘𝐾)
5 llnnleat.n . . . . . 6 𝑁 = (LLines‘𝐾)
62, 3, 4, 5islln 33810 . . . . 5 (𝐾 ∈ HL → (𝑋𝑁 ↔ (𝑋 ∈ (Base‘𝐾) ∧ ∃𝑞𝐴 𝑞( ⋖ ‘𝐾)𝑋)))
763ad2ant1 1075 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) → (𝑋𝑁 ↔ (𝑋 ∈ (Base‘𝐾) ∧ ∃𝑞𝐴 𝑞( ⋖ ‘𝐾)𝑋)))
81, 7mpbid 221 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) → (𝑋 ∈ (Base‘𝐾) ∧ ∃𝑞𝐴 𝑞( ⋖ ‘𝐾)𝑋))
98simprd 478 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) → ∃𝑞𝐴 𝑞( ⋖ ‘𝐾)𝑋)
10 simp11 1084 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) ∧ 𝑞𝐴𝑞( ⋖ ‘𝐾)𝑋) → 𝐾 ∈ HL)
11 hlatl 33665 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
1210, 11syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) ∧ 𝑞𝐴𝑞( ⋖ ‘𝐾)𝑋) → 𝐾 ∈ AtLat)
13 simp2 1055 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) ∧ 𝑞𝐴𝑞( ⋖ ‘𝐾)𝑋) → 𝑞𝐴)
14 simp13 1086 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) ∧ 𝑞𝐴𝑞( ⋖ ‘𝐾)𝑋) → 𝑃𝐴)
15 eqid 2610 . . . . . 6 (lt‘𝐾) = (lt‘𝐾)
1615, 4atnlt 33618 . . . . 5 ((𝐾 ∈ AtLat ∧ 𝑞𝐴𝑃𝐴) → ¬ 𝑞(lt‘𝐾)𝑃)
1712, 13, 14, 16syl3anc 1318 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) ∧ 𝑞𝐴𝑞( ⋖ ‘𝐾)𝑋) → ¬ 𝑞(lt‘𝐾)𝑃)
182, 4atbase 33594 . . . . . . 7 (𝑞𝐴𝑞 ∈ (Base‘𝐾))
19183ad2ant2 1076 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) ∧ 𝑞𝐴𝑞( ⋖ ‘𝐾)𝑋) → 𝑞 ∈ (Base‘𝐾))
20 simp12 1085 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) ∧ 𝑞𝐴𝑞( ⋖ ‘𝐾)𝑋) → 𝑋𝑁)
212, 5llnbase 33813 . . . . . . 7 (𝑋𝑁𝑋 ∈ (Base‘𝐾))
2220, 21syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) ∧ 𝑞𝐴𝑞( ⋖ ‘𝐾)𝑋) → 𝑋 ∈ (Base‘𝐾))
23 simp3 1056 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) ∧ 𝑞𝐴𝑞( ⋖ ‘𝐾)𝑋) → 𝑞( ⋖ ‘𝐾)𝑋)
242, 15, 3cvrlt 33575 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑞 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾)) ∧ 𝑞( ⋖ ‘𝐾)𝑋) → 𝑞(lt‘𝐾)𝑋)
2510, 19, 22, 23, 24syl31anc 1321 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) ∧ 𝑞𝐴𝑞( ⋖ ‘𝐾)𝑋) → 𝑞(lt‘𝐾)𝑋)
26 hlpos 33670 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ Poset)
2710, 26syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) ∧ 𝑞𝐴𝑞( ⋖ ‘𝐾)𝑋) → 𝐾 ∈ Poset)
282, 4atbase 33594 . . . . . . 7 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
2914, 28syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) ∧ 𝑞𝐴𝑞( ⋖ ‘𝐾)𝑋) → 𝑃 ∈ (Base‘𝐾))
30 llnnleat.l . . . . . . 7 = (le‘𝐾)
312, 30, 15pltletr 16794 . . . . . 6 ((𝐾 ∈ Poset ∧ (𝑞 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾))) → ((𝑞(lt‘𝐾)𝑋𝑋 𝑃) → 𝑞(lt‘𝐾)𝑃))
3227, 19, 22, 29, 31syl13anc 1320 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) ∧ 𝑞𝐴𝑞( ⋖ ‘𝐾)𝑋) → ((𝑞(lt‘𝐾)𝑋𝑋 𝑃) → 𝑞(lt‘𝐾)𝑃))
3325, 32mpand 707 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) ∧ 𝑞𝐴𝑞( ⋖ ‘𝐾)𝑋) → (𝑋 𝑃𝑞(lt‘𝐾)𝑃))
3417, 33mtod 188 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) ∧ 𝑞𝐴𝑞( ⋖ ‘𝐾)𝑋) → ¬ 𝑋 𝑃)
3534rexlimdv3a 3015 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) → (∃𝑞𝐴 𝑞( ⋖ ‘𝐾)𝑋 → ¬ 𝑋 𝑃))
369, 35mpd 15 1 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) → ¬ 𝑋 𝑃)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wrex 2897   class class class wbr 4583  cfv 5804  Basecbs 15695  lecple 15775  Posetcpo 16763  ltcplt 16764  ccvr 33567  Atomscatm 33568  AtLatcal 33569  HLchlt 33655  LLinesclln 33795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-preset 16751  df-poset 16769  df-plt 16781  df-glb 16798  df-p0 16862  df-lat 16869  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-llines 33802
This theorem is referenced by:  llnneat  33818  llnn0  33820  lplnnle2at  33845
  Copyright terms: Public domain W3C validator