Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  linepsubN Structured version   Visualization version   GIF version

Theorem linepsubN 34056
 Description: A line is a projective subspace. (Contributed by NM, 16-Oct-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
linepsub.n 𝑁 = (Lines‘𝐾)
linepsub.s 𝑆 = (PSubSp‘𝐾)
Assertion
Ref Expression
linepsubN ((𝐾 ∈ Lat ∧ 𝑋𝑁) → 𝑋𝑆)

Proof of Theorem linepsubN
Dummy variables 𝑎 𝑏 𝑐 𝑝 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3650 . . . . . . . 8 {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} ⊆ (Atoms‘𝐾)
2 sseq1 3589 . . . . . . . 8 (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → (𝑋 ⊆ (Atoms‘𝐾) ↔ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} ⊆ (Atoms‘𝐾)))
31, 2mpbiri 247 . . . . . . 7 (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → 𝑋 ⊆ (Atoms‘𝐾))
43a1i 11 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑎 ∈ (Atoms‘𝐾) ∧ 𝑏 ∈ (Atoms‘𝐾))) → (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → 𝑋 ⊆ (Atoms‘𝐾)))
5 eqid 2610 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
6 eqid 2610 . . . . . . . . . 10 (Atoms‘𝐾) = (Atoms‘𝐾)
75, 6atbase 33594 . . . . . . . . 9 (𝑎 ∈ (Atoms‘𝐾) → 𝑎 ∈ (Base‘𝐾))
85, 6atbase 33594 . . . . . . . . 9 (𝑏 ∈ (Atoms‘𝐾) → 𝑏 ∈ (Base‘𝐾))
97, 8anim12i 588 . . . . . . . 8 ((𝑎 ∈ (Atoms‘𝐾) ∧ 𝑏 ∈ (Atoms‘𝐾)) → (𝑎 ∈ (Base‘𝐾) ∧ 𝑏 ∈ (Base‘𝐾)))
10 eqid 2610 . . . . . . . . . 10 (join‘𝐾) = (join‘𝐾)
115, 10latjcl 16874 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑎 ∈ (Base‘𝐾) ∧ 𝑏 ∈ (Base‘𝐾)) → (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾))
12113expb 1258 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑎 ∈ (Base‘𝐾) ∧ 𝑏 ∈ (Base‘𝐾))) → (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾))
139, 12sylan2 490 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑎 ∈ (Atoms‘𝐾) ∧ 𝑏 ∈ (Atoms‘𝐾))) → (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾))
14 eleq2 2677 . . . . . . . . . . . . . . . . . . 19 (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → (𝑝𝑋𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)}))
15 breq1 4586 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 = 𝑝 → (𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏) ↔ 𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏)))
1615elrab 3331 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} ↔ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏)))
175, 6atbase 33594 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 ∈ (Atoms‘𝐾) → 𝑝 ∈ (Base‘𝐾))
1817anim1i 590 . . . . . . . . . . . . . . . . . . . 20 ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏)) → (𝑝 ∈ (Base‘𝐾) ∧ 𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏)))
1916, 18sylbi 206 . . . . . . . . . . . . . . . . . . 19 (𝑝 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → (𝑝 ∈ (Base‘𝐾) ∧ 𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏)))
2014, 19syl6bi 242 . . . . . . . . . . . . . . . . . 18 (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → (𝑝𝑋 → (𝑝 ∈ (Base‘𝐾) ∧ 𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏))))
21 eleq2 2677 . . . . . . . . . . . . . . . . . . 19 (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → (𝑞𝑋𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)}))
22 breq1 4586 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 = 𝑞 → (𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏) ↔ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)))
2322elrab 3331 . . . . . . . . . . . . . . . . . . . 20 (𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} ↔ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)))
245, 6atbase 33594 . . . . . . . . . . . . . . . . . . . . 21 (𝑞 ∈ (Atoms‘𝐾) → 𝑞 ∈ (Base‘𝐾))
2524anim1i 590 . . . . . . . . . . . . . . . . . . . 20 ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)) → (𝑞 ∈ (Base‘𝐾) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)))
2623, 25sylbi 206 . . . . . . . . . . . . . . . . . . 19 (𝑞 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → (𝑞 ∈ (Base‘𝐾) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)))
2721, 26syl6bi 242 . . . . . . . . . . . . . . . . . 18 (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → (𝑞𝑋 → (𝑞 ∈ (Base‘𝐾) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏))))
2820, 27anim12d 584 . . . . . . . . . . . . . . . . 17 (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → ((𝑝𝑋𝑞𝑋) → ((𝑝 ∈ (Base‘𝐾) ∧ 𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏)) ∧ (𝑞 ∈ (Base‘𝐾) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)))))
29 an4 861 . . . . . . . . . . . . . . . . 17 (((𝑝 ∈ (Base‘𝐾) ∧ 𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏)) ∧ (𝑞 ∈ (Base‘𝐾) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏))) ↔ ((𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) ∧ (𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏))))
3028, 29syl6ib 240 . . . . . . . . . . . . . . . 16 (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → ((𝑝𝑋𝑞𝑋) → ((𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) ∧ (𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)))))
3130imp 444 . . . . . . . . . . . . . . 15 ((𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} ∧ (𝑝𝑋𝑞𝑋)) → ((𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) ∧ (𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏))))
3231anim2i 591 . . . . . . . . . . . . . 14 (((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} ∧ (𝑝𝑋𝑞𝑋))) → ((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ ((𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) ∧ (𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)))))
3332anassrs 678 . . . . . . . . . . . . 13 ((((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ 𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)}) ∧ (𝑝𝑋𝑞𝑋)) → ((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ ((𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) ∧ (𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)))))
345, 6atbase 33594 . . . . . . . . . . . . 13 (𝑟 ∈ (Atoms‘𝐾) → 𝑟 ∈ (Base‘𝐾))
35 eqid 2610 . . . . . . . . . . . . . . . . . . . . 21 (le‘𝐾) = (le‘𝐾)
365, 35, 10latjle12 16885 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ Lat ∧ (𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾) ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾))) → ((𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)) ↔ (𝑝(join‘𝐾)𝑞)(le‘𝐾)(𝑎(join‘𝐾)𝑏)))
3736biimpd 218 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ Lat ∧ (𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾) ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾))) → ((𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)) → (𝑝(join‘𝐾)𝑞)(le‘𝐾)(𝑎(join‘𝐾)𝑏)))
38373exp2 1277 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ Lat → (𝑝 ∈ (Base‘𝐾) → (𝑞 ∈ (Base‘𝐾) → ((𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾) → ((𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)) → (𝑝(join‘𝐾)𝑞)(le‘𝐾)(𝑎(join‘𝐾)𝑏))))))
3938impd 446 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ Lat → ((𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) → ((𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾) → ((𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)) → (𝑝(join‘𝐾)𝑞)(le‘𝐾)(𝑎(join‘𝐾)𝑏)))))
4039com23 84 . . . . . . . . . . . . . . . 16 (𝐾 ∈ Lat → ((𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾) → ((𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) → ((𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)) → (𝑝(join‘𝐾)𝑞)(le‘𝐾)(𝑎(join‘𝐾)𝑏)))))
4140imp43 619 . . . . . . . . . . . . . . 15 (((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ ((𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) ∧ (𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)))) → (𝑝(join‘𝐾)𝑞)(le‘𝐾)(𝑎(join‘𝐾)𝑏))
4241adantr 480 . . . . . . . . . . . . . 14 ((((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ ((𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) ∧ (𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)))) ∧ 𝑟 ∈ (Base‘𝐾)) → (𝑝(join‘𝐾)𝑞)(le‘𝐾)(𝑎(join‘𝐾)𝑏))
435, 10latjcl 16874 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Lat ∧ 𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) → (𝑝(join‘𝐾)𝑞) ∈ (Base‘𝐾))
44433expib 1260 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ Lat → ((𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) → (𝑝(join‘𝐾)𝑞) ∈ (Base‘𝐾)))
455, 35lattr 16879 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ Lat ∧ (𝑟 ∈ (Base‘𝐾) ∧ (𝑝(join‘𝐾)𝑞) ∈ (Base‘𝐾) ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾))) → ((𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞)(le‘𝐾)(𝑎(join‘𝐾)𝑏)) → 𝑟(le‘𝐾)(𝑎(join‘𝐾)𝑏)))
46453exp2 1277 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ Lat → (𝑟 ∈ (Base‘𝐾) → ((𝑝(join‘𝐾)𝑞) ∈ (Base‘𝐾) → ((𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾) → ((𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞)(le‘𝐾)(𝑎(join‘𝐾)𝑏)) → 𝑟(le‘𝐾)(𝑎(join‘𝐾)𝑏))))))
4746com24 93 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ Lat → ((𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾) → ((𝑝(join‘𝐾)𝑞) ∈ (Base‘𝐾) → (𝑟 ∈ (Base‘𝐾) → ((𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞)(le‘𝐾)(𝑎(join‘𝐾)𝑏)) → 𝑟(le‘𝐾)(𝑎(join‘𝐾)𝑏))))))
4844, 47syl5d 71 . . . . . . . . . . . . . . . 16 (𝐾 ∈ Lat → ((𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾) → ((𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) → (𝑟 ∈ (Base‘𝐾) → ((𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞)(le‘𝐾)(𝑎(join‘𝐾)𝑏)) → 𝑟(le‘𝐾)(𝑎(join‘𝐾)𝑏))))))
4948imp41 617 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ (𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾))) ∧ 𝑟 ∈ (Base‘𝐾)) → ((𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞)(le‘𝐾)(𝑎(join‘𝐾)𝑏)) → 𝑟(le‘𝐾)(𝑎(join‘𝐾)𝑏)))
5049adantlrr 753 . . . . . . . . . . . . . 14 ((((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ ((𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) ∧ (𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)))) ∧ 𝑟 ∈ (Base‘𝐾)) → ((𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ (𝑝(join‘𝐾)𝑞)(le‘𝐾)(𝑎(join‘𝐾)𝑏)) → 𝑟(le‘𝐾)(𝑎(join‘𝐾)𝑏)))
5142, 50mpan2d 706 . . . . . . . . . . . . 13 ((((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ ((𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) ∧ (𝑝(le‘𝐾)(𝑎(join‘𝐾)𝑏) ∧ 𝑞(le‘𝐾)(𝑎(join‘𝐾)𝑏)))) ∧ 𝑟 ∈ (Base‘𝐾)) → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟(le‘𝐾)(𝑎(join‘𝐾)𝑏)))
5233, 34, 51syl2an 493 . . . . . . . . . . . 12 (((((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ 𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)}) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑟 ∈ (Atoms‘𝐾)) → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟(le‘𝐾)(𝑎(join‘𝐾)𝑏)))
53 simpr 476 . . . . . . . . . . . 12 (((((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ 𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)}) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑟 ∈ (Atoms‘𝐾)) → 𝑟 ∈ (Atoms‘𝐾))
5452, 53jctild 564 . . . . . . . . . . 11 (((((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ 𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)}) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑟 ∈ (Atoms‘𝐾)) → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑟(le‘𝐾)(𝑎(join‘𝐾)𝑏))))
55 eleq2 2677 . . . . . . . . . . . . 13 (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → (𝑟𝑋𝑟 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)}))
56 breq1 4586 . . . . . . . . . . . . . 14 (𝑐 = 𝑟 → (𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏) ↔ 𝑟(le‘𝐾)(𝑎(join‘𝐾)𝑏)))
5756elrab 3331 . . . . . . . . . . . . 13 (𝑟 ∈ {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} ↔ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑟(le‘𝐾)(𝑎(join‘𝐾)𝑏)))
5855, 57syl6bb 275 . . . . . . . . . . . 12 (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → (𝑟𝑋 ↔ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑟(le‘𝐾)(𝑎(join‘𝐾)𝑏))))
5958ad3antlr 763 . . . . . . . . . . 11 (((((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ 𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)}) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑟 ∈ (Atoms‘𝐾)) → (𝑟𝑋 ↔ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑟(le‘𝐾)(𝑎(join‘𝐾)𝑏))))
6054, 59sylibrd 248 . . . . . . . . . 10 (((((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ 𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)}) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑟 ∈ (Atoms‘𝐾)) → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟𝑋))
6160ralrimiva 2949 . . . . . . . . 9 ((((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ 𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)}) ∧ (𝑝𝑋𝑞𝑋)) → ∀𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟𝑋))
6261ralrimivva 2954 . . . . . . . 8 (((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) ∧ 𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)}) → ∀𝑝𝑋𝑞𝑋𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟𝑋))
6362ex 449 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑎(join‘𝐾)𝑏) ∈ (Base‘𝐾)) → (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → ∀𝑝𝑋𝑞𝑋𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟𝑋)))
6413, 63syldan 486 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑎 ∈ (Atoms‘𝐾) ∧ 𝑏 ∈ (Atoms‘𝐾))) → (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → ∀𝑝𝑋𝑞𝑋𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟𝑋)))
654, 64jcad 554 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑎 ∈ (Atoms‘𝐾) ∧ 𝑏 ∈ (Atoms‘𝐾))) → (𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)} → (𝑋 ⊆ (Atoms‘𝐾) ∧ ∀𝑝𝑋𝑞𝑋𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟𝑋))))
6665adantld 482 . . . 4 ((𝐾 ∈ Lat ∧ (𝑎 ∈ (Atoms‘𝐾) ∧ 𝑏 ∈ (Atoms‘𝐾))) → ((𝑎𝑏𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)}) → (𝑋 ⊆ (Atoms‘𝐾) ∧ ∀𝑝𝑋𝑞𝑋𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟𝑋))))
6766rexlimdvva 3020 . . 3 (𝐾 ∈ Lat → (∃𝑎 ∈ (Atoms‘𝐾)∃𝑏 ∈ (Atoms‘𝐾)(𝑎𝑏𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)}) → (𝑋 ⊆ (Atoms‘𝐾) ∧ ∀𝑝𝑋𝑞𝑋𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟𝑋))))
68 linepsub.n . . . 4 𝑁 = (Lines‘𝐾)
6935, 10, 6, 68isline 34043 . . 3 (𝐾 ∈ Lat → (𝑋𝑁 ↔ ∃𝑎 ∈ (Atoms‘𝐾)∃𝑏 ∈ (Atoms‘𝐾)(𝑎𝑏𝑋 = {𝑐 ∈ (Atoms‘𝐾) ∣ 𝑐(le‘𝐾)(𝑎(join‘𝐾)𝑏)})))
70 linepsub.s . . . 4 𝑆 = (PSubSp‘𝐾)
7135, 10, 6, 70ispsubsp 34049 . . 3 (𝐾 ∈ Lat → (𝑋𝑆 ↔ (𝑋 ⊆ (Atoms‘𝐾) ∧ ∀𝑝𝑋𝑞𝑋𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟𝑋))))
7267, 69, 713imtr4d 282 . 2 (𝐾 ∈ Lat → (𝑋𝑁𝑋𝑆))
7372imp 444 1 ((𝐾 ∈ Lat ∧ 𝑋𝑁) → 𝑋𝑆)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  ∃wrex 2897  {crab 2900   ⊆ wss 3540   class class class wbr 4583  ‘cfv 5804  (class class class)co 6549  Basecbs 15695  lecple 15775  joincjn 16767  Latclat 16868  Atomscatm 33568  Linesclines 33798  PSubSpcpsubsp 33800 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-poset 16769  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-lat 16869  df-ats 33572  df-lines 33805  df-psubsp 33807 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator