Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincresunit2 Structured version   Visualization version   GIF version

Theorem lincresunit2 42061
 Description: Property 2 of a specially modified restriction of a linear combination containing a unit as scalar. (Contributed by AV, 18-May-2019.)
Hypotheses
Ref Expression
lincresunit.b 𝐵 = (Base‘𝑀)
lincresunit.r 𝑅 = (Scalar‘𝑀)
lincresunit.e 𝐸 = (Base‘𝑅)
lincresunit.u 𝑈 = (Unit‘𝑅)
lincresunit.0 0 = (0g𝑅)
lincresunit.z 𝑍 = (0g𝑀)
lincresunit.n 𝑁 = (invg𝑅)
lincresunit.i 𝐼 = (invr𝑅)
lincresunit.t · = (.r𝑅)
lincresunit.g 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)))
Assertion
Ref Expression
lincresunit2 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → 𝐺 finSupp 0 )
Distinct variable groups:   𝐵,𝑠   𝐸,𝑠   𝐹,𝑠   𝑀,𝑠   𝑆,𝑠   𝑋,𝑠   𝑈,𝑠   𝐼,𝑠   𝑁,𝑠   · ,𝑠   0 ,𝑠
Allowed substitution hints:   𝑅(𝑠)   𝐺(𝑠)   𝑍(𝑠)

Proof of Theorem lincresunit2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 difexg 4735 . . . . . . . . . . 11 (𝑆 ∈ 𝒫 𝐵 → (𝑆 ∖ {𝑋}) ∈ V)
213ad2ant1 1075 . . . . . . . . . 10 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → (𝑆 ∖ {𝑋}) ∈ V)
32adantl 481 . . . . . . . . 9 (((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → (𝑆 ∖ {𝑋}) ∈ V)
43adantr 480 . . . . . . . 8 ((((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝐹 finSupp 0 ) → (𝑆 ∖ {𝑋}) ∈ V)
5 lincresunit.g . . . . . . . . 9 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)))
6 mptexg 6389 . . . . . . . . 9 ((𝑆 ∖ {𝑋}) ∈ V → (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠))) ∈ V)
75, 6syl5eqel 2692 . . . . . . . 8 ((𝑆 ∖ {𝑋}) ∈ V → 𝐺 ∈ V)
84, 7syl 17 . . . . . . 7 ((((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝐹 finSupp 0 ) → 𝐺 ∈ V)
95funmpt2 5841 . . . . . . . 8 Fun 𝐺
109a1i 11 . . . . . . 7 ((((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝐹 finSupp 0 ) → Fun 𝐺)
11 lincresunit.0 . . . . . . . . 9 0 = (0g𝑅)
12 fvex 6113 . . . . . . . . 9 (0g𝑅) ∈ V
1311, 12eqeltri 2684 . . . . . . . 8 0 ∈ V
1413a1i 11 . . . . . . 7 ((((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝐹 finSupp 0 ) → 0 ∈ V)
15 simpr 476 . . . . . . . 8 ((((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝐹 finSupp 0 ) → 𝐹 finSupp 0 )
1615fsuppimpd 8165 . . . . . . 7 ((((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝐹 finSupp 0 ) → (𝐹 supp 0 ) ∈ Fin)
17 simplr 788 . . . . . . . . . . . . 13 ((((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑠 ∈ (𝑆 ∖ {𝑋})) → (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆))
18 simpll 786 . . . . . . . . . . . . 13 ((((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑠 ∈ (𝑆 ∖ {𝑋})) → (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈))
19 eldifi 3694 . . . . . . . . . . . . . 14 (𝑠 ∈ (𝑆 ∖ {𝑋}) → 𝑠𝑆)
2019adantl 481 . . . . . . . . . . . . 13 ((((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑠 ∈ (𝑆 ∖ {𝑋})) → 𝑠𝑆)
21 lincresunit.b . . . . . . . . . . . . . 14 𝐵 = (Base‘𝑀)
22 lincresunit.r . . . . . . . . . . . . . 14 𝑅 = (Scalar‘𝑀)
23 lincresunit.e . . . . . . . . . . . . . 14 𝐸 = (Base‘𝑅)
24 lincresunit.u . . . . . . . . . . . . . 14 𝑈 = (Unit‘𝑅)
25 lincresunit.z . . . . . . . . . . . . . 14 𝑍 = (0g𝑀)
26 lincresunit.n . . . . . . . . . . . . . 14 𝑁 = (invg𝑅)
27 lincresunit.i . . . . . . . . . . . . . 14 𝐼 = (invr𝑅)
28 lincresunit.t . . . . . . . . . . . . . 14 · = (.r𝑅)
2921, 22, 23, 24, 11, 25, 26, 27, 28, 5lincresunitlem2 42059 . . . . . . . . . . . . 13 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈)) ∧ 𝑠𝑆) → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)) ∈ 𝐸)
3017, 18, 20, 29syl21anc 1317 . . . . . . . . . . . 12 ((((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑠 ∈ (𝑆 ∖ {𝑋})) → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)) ∈ 𝐸)
3130ralrimiva 2949 . . . . . . . . . . 11 (((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → ∀𝑠 ∈ (𝑆 ∖ {𝑋})((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)) ∈ 𝐸)
325fnmpt 5933 . . . . . . . . . . 11 (∀𝑠 ∈ (𝑆 ∖ {𝑋})((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)) ∈ 𝐸𝐺 Fn (𝑆 ∖ {𝑋}))
3331, 32syl 17 . . . . . . . . . 10 (((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → 𝐺 Fn (𝑆 ∖ {𝑋}))
34 elmapfn 7766 . . . . . . . . . . . 12 (𝐹 ∈ (𝐸𝑚 𝑆) → 𝐹 Fn 𝑆)
3534adantr 480 . . . . . . . . . . 11 ((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) → 𝐹 Fn 𝑆)
3635adantr 480 . . . . . . . . . 10 (((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → 𝐹 Fn 𝑆)
3733, 36jca 553 . . . . . . . . 9 (((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → (𝐺 Fn (𝑆 ∖ {𝑋}) ∧ 𝐹 Fn 𝑆))
38 difssd 3700 . . . . . . . . . 10 (((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → (𝑆 ∖ {𝑋}) ⊆ 𝑆)
39 simpr1 1060 . . . . . . . . . 10 (((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → 𝑆 ∈ 𝒫 𝐵)
4013a1i 11 . . . . . . . . . 10 (((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → 0 ∈ V)
4138, 39, 403jca 1235 . . . . . . . . 9 (((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → ((𝑆 ∖ {𝑋}) ⊆ 𝑆𝑆 ∈ 𝒫 𝐵0 ∈ V))
425a1i 11 . . . . . . . . . . . . 13 (((((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑥 ∈ (𝑆 ∖ {𝑋})) ∧ (𝐹𝑥) = 0 ) → 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠))))
43 fveq2 6103 . . . . . . . . . . . . . . 15 (𝑠 = 𝑥 → (𝐹𝑠) = (𝐹𝑥))
4443oveq2d 6565 . . . . . . . . . . . . . 14 (𝑠 = 𝑥 → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)) = ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑥)))
4544adantl 481 . . . . . . . . . . . . 13 ((((((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑥 ∈ (𝑆 ∖ {𝑋})) ∧ (𝐹𝑥) = 0 ) ∧ 𝑠 = 𝑥) → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)) = ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑥)))
46 simplr 788 . . . . . . . . . . . . 13 (((((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑥 ∈ (𝑆 ∖ {𝑋})) ∧ (𝐹𝑥) = 0 ) → 𝑥 ∈ (𝑆 ∖ {𝑋}))
47 simpllr 795 . . . . . . . . . . . . . 14 (((((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑥 ∈ (𝑆 ∖ {𝑋})) ∧ (𝐹𝑥) = 0 ) → (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆))
48 simpll 786 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑥 ∈ (𝑆 ∖ {𝑋})) → (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈))
4948adantr 480 . . . . . . . . . . . . . 14 (((((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑥 ∈ (𝑆 ∖ {𝑋})) ∧ (𝐹𝑥) = 0 ) → (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈))
50 eldifi 3694 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝑆 ∖ {𝑋}) → 𝑥𝑆)
5150adantl 481 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑥 ∈ (𝑆 ∖ {𝑋})) → 𝑥𝑆)
5251adantr 480 . . . . . . . . . . . . . 14 (((((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑥 ∈ (𝑆 ∖ {𝑋})) ∧ (𝐹𝑥) = 0 ) → 𝑥𝑆)
5321, 22, 23, 24, 11, 25, 26, 27, 28, 5lincresunitlem2 42059 . . . . . . . . . . . . . 14 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈)) ∧ 𝑥𝑆) → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑥)) ∈ 𝐸)
5447, 49, 52, 53syl21anc 1317 . . . . . . . . . . . . 13 (((((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑥 ∈ (𝑆 ∖ {𝑋})) ∧ (𝐹𝑥) = 0 ) → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑥)) ∈ 𝐸)
5542, 45, 46, 54fvmptd 6197 . . . . . . . . . . . 12 (((((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑥 ∈ (𝑆 ∖ {𝑋})) ∧ (𝐹𝑥) = 0 ) → (𝐺𝑥) = ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑥)))
56 oveq2 6557 . . . . . . . . . . . . 13 ((𝐹𝑥) = 0 → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑥)) = ((𝐼‘(𝑁‘(𝐹𝑋))) · 0 ))
5722lmodring 18694 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ LMod → 𝑅 ∈ Ring)
58573ad2ant2 1076 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → 𝑅 ∈ Ring)
5958adantl 481 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → 𝑅 ∈ Ring)
6021, 22, 23, 24, 11, 25, 26, 27, 28, 5lincresunitlem1 42058 . . . . . . . . . . . . . . . 16 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈)) → (𝐼‘(𝑁‘(𝐹𝑋))) ∈ 𝐸)
6160ancoms 468 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → (𝐼‘(𝑁‘(𝐹𝑋))) ∈ 𝐸)
6223, 28, 11ringrz 18411 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ (𝐼‘(𝑁‘(𝐹𝑋))) ∈ 𝐸) → ((𝐼‘(𝑁‘(𝐹𝑋))) · 0 ) = 0 )
6359, 61, 62syl2anc 691 . . . . . . . . . . . . . 14 (((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → ((𝐼‘(𝑁‘(𝐹𝑋))) · 0 ) = 0 )
6463adantr 480 . . . . . . . . . . . . 13 ((((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑥 ∈ (𝑆 ∖ {𝑋})) → ((𝐼‘(𝑁‘(𝐹𝑋))) · 0 ) = 0 )
6556, 64sylan9eqr 2666 . . . . . . . . . . . 12 (((((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑥 ∈ (𝑆 ∖ {𝑋})) ∧ (𝐹𝑥) = 0 ) → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑥)) = 0 )
6655, 65eqtrd 2644 . . . . . . . . . . 11 (((((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑥 ∈ (𝑆 ∖ {𝑋})) ∧ (𝐹𝑥) = 0 ) → (𝐺𝑥) = 0 )
6766ex 449 . . . . . . . . . 10 ((((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝑥 ∈ (𝑆 ∖ {𝑋})) → ((𝐹𝑥) = 0 → (𝐺𝑥) = 0 ))
6867ralrimiva 2949 . . . . . . . . 9 (((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → ∀𝑥 ∈ (𝑆 ∖ {𝑋})((𝐹𝑥) = 0 → (𝐺𝑥) = 0 ))
69 suppfnss 7207 . . . . . . . . . 10 (((𝐺 Fn (𝑆 ∖ {𝑋}) ∧ 𝐹 Fn 𝑆) ∧ ((𝑆 ∖ {𝑋}) ⊆ 𝑆𝑆 ∈ 𝒫 𝐵0 ∈ V)) → (∀𝑥 ∈ (𝑆 ∖ {𝑋})((𝐹𝑥) = 0 → (𝐺𝑥) = 0 ) → (𝐺 supp 0 ) ⊆ (𝐹 supp 0 )))
7069imp 444 . . . . . . . . 9 ((((𝐺 Fn (𝑆 ∖ {𝑋}) ∧ 𝐹 Fn 𝑆) ∧ ((𝑆 ∖ {𝑋}) ⊆ 𝑆𝑆 ∈ 𝒫 𝐵0 ∈ V)) ∧ ∀𝑥 ∈ (𝑆 ∖ {𝑋})((𝐹𝑥) = 0 → (𝐺𝑥) = 0 )) → (𝐺 supp 0 ) ⊆ (𝐹 supp 0 ))
7137, 41, 68, 70syl21anc 1317 . . . . . . . 8 (((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → (𝐺 supp 0 ) ⊆ (𝐹 supp 0 ))
7271adantr 480 . . . . . . 7 ((((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝐹 finSupp 0 ) → (𝐺 supp 0 ) ⊆ (𝐹 supp 0 ))
73 suppssfifsupp 8173 . . . . . . 7 (((𝐺 ∈ V ∧ Fun 𝐺0 ∈ V) ∧ ((𝐹 supp 0 ) ∈ Fin ∧ (𝐺 supp 0 ) ⊆ (𝐹 supp 0 ))) → 𝐺 finSupp 0 )
748, 10, 14, 16, 72, 73syl32anc 1326 . . . . . 6 ((((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) ∧ 𝐹 finSupp 0 ) → 𝐺 finSupp 0 )
7574ex 449 . . . . 5 (((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) ∧ (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆)) → (𝐹 finSupp 0𝐺 finSupp 0 ))
7675ex 449 . . . 4 ((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) → ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → (𝐹 finSupp 0𝐺 finSupp 0 )))
7776com23 84 . . 3 ((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈) → (𝐹 finSupp 0 → ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → 𝐺 finSupp 0 )))
78773impia 1253 . 2 ((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 ) → ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → 𝐺 finSupp 0 ))
7978impcom 445 1 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → 𝐺 finSupp 0 )
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ∀wral 2896  Vcvv 3173   ∖ cdif 3537   ⊆ wss 3540  𝒫 cpw 4108  {csn 4125   class class class wbr 4583   ↦ cmpt 4643  Fun wfun 5798   Fn wfn 5799  ‘cfv 5804  (class class class)co 6549   supp csupp 7182   ↑𝑚 cmap 7744  Fincfn 7841   finSupp cfsupp 8158  Basecbs 15695  .rcmulr 15769  Scalarcsca 15771  0gc0g 15923  invgcminusg 17246  Ringcrg 18370  Unitcui 18462  invrcinvr 18494  LModclmod 18686 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-mgp 18313  df-ur 18325  df-ring 18372  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-lmod 18688 This theorem is referenced by:  lincresunit3lem2  42063  lincresunit3  42064  isldepslvec2  42068
 Copyright terms: Public domain W3C validator