MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limsupval Structured version   Visualization version   GIF version

Theorem limsupval 14053
Description: The superior limit of an infinite sequence 𝐹 of extended real numbers, which is the infimum of the set of suprema of all upper infinite subsequences of 𝐹. Definition 12-4.1 of [Gleason] p. 175. (Contributed by NM, 26-Oct-2005.) (Revised by AV, 12-Sep-2014.)
Hypothesis
Ref Expression
limsupval.1 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
Assertion
Ref Expression
limsupval (𝐹𝑉 → (lim sup‘𝐹) = inf(ran 𝐺, ℝ*, < ))
Distinct variable group:   𝑘,𝐹
Allowed substitution hints:   𝐺(𝑘)   𝑉(𝑘)

Proof of Theorem limsupval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elex 3185 . 2 (𝐹𝑉𝐹 ∈ V)
2 imaeq1 5380 . . . . . . . . 9 (𝑥 = 𝐹 → (𝑥 “ (𝑘[,)+∞)) = (𝐹 “ (𝑘[,)+∞)))
32ineq1d 3775 . . . . . . . 8 (𝑥 = 𝐹 → ((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*) = ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*))
43supeq1d 8235 . . . . . . 7 (𝑥 = 𝐹 → sup(((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) = sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
54mpteq2dv 4673 . . . . . 6 (𝑥 = 𝐹 → (𝑘 ∈ ℝ ↦ sup(((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )))
6 limsupval.1 . . . . . 6 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
75, 6syl6eqr 2662 . . . . 5 (𝑥 = 𝐹 → (𝑘 ∈ ℝ ↦ sup(((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = 𝐺)
87rneqd 5274 . . . 4 (𝑥 = 𝐹 → ran (𝑘 ∈ ℝ ↦ sup(((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = ran 𝐺)
98infeq1d 8266 . . 3 (𝑥 = 𝐹 → inf(ran (𝑘 ∈ ℝ ↦ sup(((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) = inf(ran 𝐺, ℝ*, < ))
10 df-limsup 14050 . . 3 lim sup = (𝑥 ∈ V ↦ inf(ran (𝑘 ∈ ℝ ↦ sup(((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
11 xrltso 11850 . . . 4 < Or ℝ*
1211infex 8282 . . 3 inf(ran 𝐺, ℝ*, < ) ∈ V
139, 10, 12fvmpt 6191 . 2 (𝐹 ∈ V → (lim sup‘𝐹) = inf(ran 𝐺, ℝ*, < ))
141, 13syl 17 1 (𝐹𝑉 → (lim sup‘𝐹) = inf(ran 𝐺, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977  Vcvv 3173  cin 3539  cmpt 4643  ran crn 5039  cima 5041  cfv 5804  (class class class)co 6549  supcsup 8229  infcinf 8230  cr 9814  +∞cpnf 9950  *cxr 9952   < clt 9953  [,)cico 12048  lim supclsp 14049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-pre-lttri 9889  ax-pre-lttrn 9890
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-limsup 14050
This theorem is referenced by:  limsuple  14057  limsupval2  14059
  Copyright terms: Public domain W3C validator