MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limsupgle Structured version   Visualization version   GIF version

Theorem limsupgle 14056
Description: The defining property of the superior limit function. (Contributed by Mario Carneiro, 5-Sep-2014.) (Revised by Mario Carneiro, 7-May-2016.)
Hypothesis
Ref Expression
limsupval.1 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
Assertion
Ref Expression
limsupgle (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → ((𝐺𝐶) ≤ 𝐴 ↔ ∀𝑗𝐵 (𝐶𝑗 → (𝐹𝑗) ≤ 𝐴)))
Distinct variable groups:   𝑘,𝐹   𝐴,𝑗   𝐵,𝑗   𝐶,𝑗,𝑘   𝑗,𝐹
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)   𝐺(𝑗,𝑘)

Proof of Theorem limsupgle
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 limsupval.1 . . . . 5 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
21limsupgval 14055 . . . 4 (𝐶 ∈ ℝ → (𝐺𝐶) = sup(((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*), ℝ*, < ))
323ad2ant2 1076 . . 3 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → (𝐺𝐶) = sup(((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*), ℝ*, < ))
43breq1d 4593 . 2 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → ((𝐺𝐶) ≤ 𝐴 ↔ sup(((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝐴))
5 inss2 3796 . . 3 ((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*) ⊆ ℝ*
6 simp3 1056 . . 3 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → 𝐴 ∈ ℝ*)
7 supxrleub 12028 . . 3 ((((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*) ⊆ ℝ*𝐴 ∈ ℝ*) → (sup(((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝐴 ↔ ∀𝑥 ∈ ((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*)𝑥𝐴))
85, 6, 7sylancr 694 . 2 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → (sup(((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝐴 ↔ ∀𝑥 ∈ ((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*)𝑥𝐴))
9 imassrn 5396 . . . . . . 7 (𝐹 “ (𝐶[,)+∞)) ⊆ ran 𝐹
10 simp1r 1079 . . . . . . . 8 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → 𝐹:𝐵⟶ℝ*)
11 frn 5966 . . . . . . . 8 (𝐹:𝐵⟶ℝ* → ran 𝐹 ⊆ ℝ*)
1210, 11syl 17 . . . . . . 7 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → ran 𝐹 ⊆ ℝ*)
139, 12syl5ss 3579 . . . . . 6 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → (𝐹 “ (𝐶[,)+∞)) ⊆ ℝ*)
14 df-ss 3554 . . . . . 6 ((𝐹 “ (𝐶[,)+∞)) ⊆ ℝ* ↔ ((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*) = (𝐹 “ (𝐶[,)+∞)))
1513, 14sylib 207 . . . . 5 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → ((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*) = (𝐹 “ (𝐶[,)+∞)))
16 imadmres 5544 . . . . 5 (𝐹 “ dom (𝐹 ↾ (𝐶[,)+∞))) = (𝐹 “ (𝐶[,)+∞))
1715, 16syl6eqr 2662 . . . 4 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → ((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*) = (𝐹 “ dom (𝐹 ↾ (𝐶[,)+∞))))
1817raleqdv 3121 . . 3 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → (∀𝑥 ∈ ((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*)𝑥𝐴 ↔ ∀𝑥 ∈ (𝐹 “ dom (𝐹 ↾ (𝐶[,)+∞)))𝑥𝐴))
19 ffn 5958 . . . . 5 (𝐹:𝐵⟶ℝ*𝐹 Fn 𝐵)
2010, 19syl 17 . . . 4 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → 𝐹 Fn 𝐵)
21 fdm 5964 . . . . . . . 8 (𝐹:𝐵⟶ℝ* → dom 𝐹 = 𝐵)
2210, 21syl 17 . . . . . . 7 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → dom 𝐹 = 𝐵)
2322ineq2d 3776 . . . . . 6 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → ((𝐶[,)+∞) ∩ dom 𝐹) = ((𝐶[,)+∞) ∩ 𝐵))
24 dmres 5339 . . . . . 6 dom (𝐹 ↾ (𝐶[,)+∞)) = ((𝐶[,)+∞) ∩ dom 𝐹)
25 incom 3767 . . . . . 6 (𝐵 ∩ (𝐶[,)+∞)) = ((𝐶[,)+∞) ∩ 𝐵)
2623, 24, 253eqtr4g 2669 . . . . 5 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → dom (𝐹 ↾ (𝐶[,)+∞)) = (𝐵 ∩ (𝐶[,)+∞)))
27 inss1 3795 . . . . 5 (𝐵 ∩ (𝐶[,)+∞)) ⊆ 𝐵
2826, 27syl6eqss 3618 . . . 4 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → dom (𝐹 ↾ (𝐶[,)+∞)) ⊆ 𝐵)
29 breq1 4586 . . . . 5 (𝑥 = (𝐹𝑗) → (𝑥𝐴 ↔ (𝐹𝑗) ≤ 𝐴))
3029ralima 6402 . . . 4 ((𝐹 Fn 𝐵 ∧ dom (𝐹 ↾ (𝐶[,)+∞)) ⊆ 𝐵) → (∀𝑥 ∈ (𝐹 “ dom (𝐹 ↾ (𝐶[,)+∞)))𝑥𝐴 ↔ ∀𝑗 ∈ dom (𝐹 ↾ (𝐶[,)+∞))(𝐹𝑗) ≤ 𝐴))
3120, 28, 30syl2anc 691 . . 3 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → (∀𝑥 ∈ (𝐹 “ dom (𝐹 ↾ (𝐶[,)+∞)))𝑥𝐴 ↔ ∀𝑗 ∈ dom (𝐹 ↾ (𝐶[,)+∞))(𝐹𝑗) ≤ 𝐴))
3226eleq2d 2673 . . . . . . . 8 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → (𝑗 ∈ dom (𝐹 ↾ (𝐶[,)+∞)) ↔ 𝑗 ∈ (𝐵 ∩ (𝐶[,)+∞))))
33 elin 3758 . . . . . . . 8 (𝑗 ∈ (𝐵 ∩ (𝐶[,)+∞)) ↔ (𝑗𝐵𝑗 ∈ (𝐶[,)+∞)))
3432, 33syl6bb 275 . . . . . . 7 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → (𝑗 ∈ dom (𝐹 ↾ (𝐶[,)+∞)) ↔ (𝑗𝐵𝑗 ∈ (𝐶[,)+∞))))
35 simpl2 1058 . . . . . . . . 9 ((((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) ∧ 𝑗𝐵) → 𝐶 ∈ ℝ)
36 simp1l 1078 . . . . . . . . . 10 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → 𝐵 ⊆ ℝ)
3736sselda 3568 . . . . . . . . 9 ((((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) ∧ 𝑗𝐵) → 𝑗 ∈ ℝ)
38 elicopnf 12140 . . . . . . . . . 10 (𝐶 ∈ ℝ → (𝑗 ∈ (𝐶[,)+∞) ↔ (𝑗 ∈ ℝ ∧ 𝐶𝑗)))
3938baibd 946 . . . . . . . . 9 ((𝐶 ∈ ℝ ∧ 𝑗 ∈ ℝ) → (𝑗 ∈ (𝐶[,)+∞) ↔ 𝐶𝑗))
4035, 37, 39syl2anc 691 . . . . . . . 8 ((((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) ∧ 𝑗𝐵) → (𝑗 ∈ (𝐶[,)+∞) ↔ 𝐶𝑗))
4140pm5.32da 671 . . . . . . 7 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → ((𝑗𝐵𝑗 ∈ (𝐶[,)+∞)) ↔ (𝑗𝐵𝐶𝑗)))
4234, 41bitrd 267 . . . . . 6 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → (𝑗 ∈ dom (𝐹 ↾ (𝐶[,)+∞)) ↔ (𝑗𝐵𝐶𝑗)))
4342imbi1d 330 . . . . 5 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → ((𝑗 ∈ dom (𝐹 ↾ (𝐶[,)+∞)) → (𝐹𝑗) ≤ 𝐴) ↔ ((𝑗𝐵𝐶𝑗) → (𝐹𝑗) ≤ 𝐴)))
44 impexp 461 . . . . 5 (((𝑗𝐵𝐶𝑗) → (𝐹𝑗) ≤ 𝐴) ↔ (𝑗𝐵 → (𝐶𝑗 → (𝐹𝑗) ≤ 𝐴)))
4543, 44syl6bb 275 . . . 4 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → ((𝑗 ∈ dom (𝐹 ↾ (𝐶[,)+∞)) → (𝐹𝑗) ≤ 𝐴) ↔ (𝑗𝐵 → (𝐶𝑗 → (𝐹𝑗) ≤ 𝐴))))
4645ralbidv2 2967 . . 3 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → (∀𝑗 ∈ dom (𝐹 ↾ (𝐶[,)+∞))(𝐹𝑗) ≤ 𝐴 ↔ ∀𝑗𝐵 (𝐶𝑗 → (𝐹𝑗) ≤ 𝐴)))
4718, 31, 463bitrd 293 . 2 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → (∀𝑥 ∈ ((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*)𝑥𝐴 ↔ ∀𝑗𝐵 (𝐶𝑗 → (𝐹𝑗) ≤ 𝐴)))
484, 8, 473bitrd 293 1 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → ((𝐺𝐶) ≤ 𝐴 ↔ ∀𝑗𝐵 (𝐶𝑗 → (𝐹𝑗) ≤ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  cin 3539  wss 3540   class class class wbr 4583  cmpt 4643  dom cdm 5038  ran crn 5039  cres 5040  cima 5041   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  supcsup 8229  cr 9814  +∞cpnf 9950  *cxr 9952   < clt 9953  cle 9954  [,)cico 12048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-ico 12052
This theorem is referenced by:  limsupgre  14060  limsupbnd1  14061  limsupbnd2  14062  mbflimsup  23239
  Copyright terms: Public domain W3C validator