MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limsupbnd1 Structured version   Visualization version   GIF version

Theorem limsupbnd1 14061
Description: If a sequence is eventually at most 𝐴, then the limsup is also at most 𝐴. (The converse is only true if the less or equal is replaced by strictly less than; consider the sequence 1 / 𝑛 which is never less or equal to zero even though the limsup is.) (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 12-Sep-2020.)
Hypotheses
Ref Expression
limsupbnd.1 (𝜑𝐵 ⊆ ℝ)
limsupbnd.2 (𝜑𝐹:𝐵⟶ℝ*)
limsupbnd.3 (𝜑𝐴 ∈ ℝ*)
limsupbnd1.4 (𝜑 → ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (𝐹𝑗) ≤ 𝐴))
Assertion
Ref Expression
limsupbnd1 (𝜑 → (lim sup‘𝐹) ≤ 𝐴)
Distinct variable groups:   𝑗,𝑘,𝐴   𝐵,𝑗,𝑘   𝑗,𝐹,𝑘   𝜑,𝑗,𝑘

Proof of Theorem limsupbnd1
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 limsupbnd1.4 . 2 (𝜑 → ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (𝐹𝑗) ≤ 𝐴))
2 limsupbnd.1 . . . . . 6 (𝜑𝐵 ⊆ ℝ)
32adantr 480 . . . . 5 ((𝜑𝑘 ∈ ℝ) → 𝐵 ⊆ ℝ)
4 limsupbnd.2 . . . . . 6 (𝜑𝐹:𝐵⟶ℝ*)
54adantr 480 . . . . 5 ((𝜑𝑘 ∈ ℝ) → 𝐹:𝐵⟶ℝ*)
6 simpr 476 . . . . 5 ((𝜑𝑘 ∈ ℝ) → 𝑘 ∈ ℝ)
7 limsupbnd.3 . . . . . 6 (𝜑𝐴 ∈ ℝ*)
87adantr 480 . . . . 5 ((𝜑𝑘 ∈ ℝ) → 𝐴 ∈ ℝ*)
9 eqid 2610 . . . . . 6 (𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))
109limsupgle 14056 . . . . 5 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝑘 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → (((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑘) ≤ 𝐴 ↔ ∀𝑗𝐵 (𝑘𝑗 → (𝐹𝑗) ≤ 𝐴)))
113, 5, 6, 8, 10syl211anc 1324 . . . 4 ((𝜑𝑘 ∈ ℝ) → (((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑘) ≤ 𝐴 ↔ ∀𝑗𝐵 (𝑘𝑗 → (𝐹𝑗) ≤ 𝐴)))
12 reex 9906 . . . . . . . . . . . 12 ℝ ∈ V
1312ssex 4730 . . . . . . . . . . 11 (𝐵 ⊆ ℝ → 𝐵 ∈ V)
142, 13syl 17 . . . . . . . . . 10 (𝜑𝐵 ∈ V)
15 xrex 11705 . . . . . . . . . . 11 * ∈ V
1615a1i 11 . . . . . . . . . 10 (𝜑 → ℝ* ∈ V)
17 fex2 7014 . . . . . . . . . 10 ((𝐹:𝐵⟶ℝ*𝐵 ∈ V ∧ ℝ* ∈ V) → 𝐹 ∈ V)
184, 14, 16, 17syl3anc 1318 . . . . . . . . 9 (𝜑𝐹 ∈ V)
19 limsupcl 14052 . . . . . . . . 9 (𝐹 ∈ V → (lim sup‘𝐹) ∈ ℝ*)
2018, 19syl 17 . . . . . . . 8 (𝜑 → (lim sup‘𝐹) ∈ ℝ*)
21 xrleid 11859 . . . . . . . 8 ((lim sup‘𝐹) ∈ ℝ* → (lim sup‘𝐹) ≤ (lim sup‘𝐹))
2220, 21syl 17 . . . . . . 7 (𝜑 → (lim sup‘𝐹) ≤ (lim sup‘𝐹))
239limsuple 14057 . . . . . . . 8 ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ* ∧ (lim sup‘𝐹) ∈ ℝ*) → ((lim sup‘𝐹) ≤ (lim sup‘𝐹) ↔ ∀𝑘 ∈ ℝ (lim sup‘𝐹) ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑘)))
242, 4, 20, 23syl3anc 1318 . . . . . . 7 (𝜑 → ((lim sup‘𝐹) ≤ (lim sup‘𝐹) ↔ ∀𝑘 ∈ ℝ (lim sup‘𝐹) ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑘)))
2522, 24mpbid 221 . . . . . 6 (𝜑 → ∀𝑘 ∈ ℝ (lim sup‘𝐹) ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑘))
2625r19.21bi 2916 . . . . 5 ((𝜑𝑘 ∈ ℝ) → (lim sup‘𝐹) ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑘))
2720adantr 480 . . . . . 6 ((𝜑𝑘 ∈ ℝ) → (lim sup‘𝐹) ∈ ℝ*)
289limsupgf 14054 . . . . . . . 8 (𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < )):ℝ⟶ℝ*
2928a1i 11 . . . . . . 7 (𝜑 → (𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < )):ℝ⟶ℝ*)
3029ffvelrnda 6267 . . . . . 6 ((𝜑𝑘 ∈ ℝ) → ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑘) ∈ ℝ*)
31 xrletr 11865 . . . . . 6 (((lim sup‘𝐹) ∈ ℝ* ∧ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑘) ∈ ℝ*𝐴 ∈ ℝ*) → (((lim sup‘𝐹) ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑘) ∧ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑘) ≤ 𝐴) → (lim sup‘𝐹) ≤ 𝐴))
3227, 30, 8, 31syl3anc 1318 . . . . 5 ((𝜑𝑘 ∈ ℝ) → (((lim sup‘𝐹) ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑘) ∧ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑘) ≤ 𝐴) → (lim sup‘𝐹) ≤ 𝐴))
3326, 32mpand 707 . . . 4 ((𝜑𝑘 ∈ ℝ) → (((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑘) ≤ 𝐴 → (lim sup‘𝐹) ≤ 𝐴))
3411, 33sylbird 249 . . 3 ((𝜑𝑘 ∈ ℝ) → (∀𝑗𝐵 (𝑘𝑗 → (𝐹𝑗) ≤ 𝐴) → (lim sup‘𝐹) ≤ 𝐴))
3534rexlimdva 3013 . 2 (𝜑 → (∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (𝐹𝑗) ≤ 𝐴) → (lim sup‘𝐹) ≤ 𝐴))
361, 35mpd 15 1 (𝜑 → (lim sup‘𝐹) ≤ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  wcel 1977  wral 2896  wrex 2897  Vcvv 3173  cin 3539  wss 3540   class class class wbr 4583  cmpt 4643  cima 5041  wf 5800  cfv 5804  (class class class)co 6549  supcsup 8229  cr 9814  +∞cpnf 9950  *cxr 9952   < clt 9953  cle 9954  [,)cico 12048  lim supclsp 14049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-ico 12052  df-limsup 14050
This theorem is referenced by:  caucvgrlem  14251  limsupre  38708
  Copyright terms: Public domain W3C validator