Proof of Theorem lhpocnle
Step | Hyp | Ref
| Expression |
1 | | hlatl 33665 |
. . . . 5
⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) |
2 | 1 | adantr 480 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐾 ∈ AtLat) |
3 | | simpr 476 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑊 ∈ 𝐻) |
4 | | eqid 2610 |
. . . . . . 7
⊢
(Base‘𝐾) =
(Base‘𝐾) |
5 | | lhpocnle.h |
. . . . . . 7
⊢ 𝐻 = (LHyp‘𝐾) |
6 | 4, 5 | lhpbase 34302 |
. . . . . 6
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
7 | | lhpocnle.o |
. . . . . . 7
⊢ ⊥ =
(oc‘𝐾) |
8 | | eqid 2610 |
. . . . . . 7
⊢
(Atoms‘𝐾) =
(Atoms‘𝐾) |
9 | 4, 7, 8, 5 | lhpoc 34318 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ (Base‘𝐾)) → (𝑊 ∈ 𝐻 ↔ ( ⊥ ‘𝑊) ∈ (Atoms‘𝐾))) |
10 | 6, 9 | sylan2 490 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑊 ∈ 𝐻 ↔ ( ⊥ ‘𝑊) ∈ (Atoms‘𝐾))) |
11 | 3, 10 | mpbid 221 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( ⊥ ‘𝑊) ∈ (Atoms‘𝐾)) |
12 | | eqid 2610 |
. . . . 5
⊢
(0.‘𝐾) =
(0.‘𝐾) |
13 | 12, 8 | atn0 33613 |
. . . 4
⊢ ((𝐾 ∈ AtLat ∧ ( ⊥
‘𝑊) ∈
(Atoms‘𝐾)) → (
⊥
‘𝑊) ≠
(0.‘𝐾)) |
14 | 2, 11, 13 | syl2anc 691 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( ⊥ ‘𝑊) ≠ (0.‘𝐾)) |
15 | 14 | neneqd 2787 |
. 2
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ¬ ( ⊥ ‘𝑊) = (0.‘𝐾)) |
16 | | simpr 476 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ( ⊥ ‘𝑊) ≤ 𝑊) → ( ⊥ ‘𝑊) ≤ 𝑊) |
17 | | hllat 33668 |
. . . . . . 7
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
18 | 17 | ad2antrr 758 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ( ⊥ ‘𝑊) ≤ 𝑊) → 𝐾 ∈ Lat) |
19 | | hlop 33667 |
. . . . . . . 8
⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) |
20 | 19 | ad2antrr 758 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ( ⊥ ‘𝑊) ≤ 𝑊) → 𝐾 ∈ OP) |
21 | 6 | ad2antlr 759 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ( ⊥ ‘𝑊) ≤ 𝑊) → 𝑊 ∈ (Base‘𝐾)) |
22 | 4, 7 | opoccl 33499 |
. . . . . . 7
⊢ ((𝐾 ∈ OP ∧ 𝑊 ∈ (Base‘𝐾)) → ( ⊥ ‘𝑊) ∈ (Base‘𝐾)) |
23 | 20, 21, 22 | syl2anc 691 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ( ⊥ ‘𝑊) ≤ 𝑊) → ( ⊥ ‘𝑊) ∈ (Base‘𝐾)) |
24 | | lhpocnle.l |
. . . . . . 7
⊢ ≤ =
(le‘𝐾) |
25 | 4, 24 | latref 16876 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ ( ⊥
‘𝑊) ∈
(Base‘𝐾)) → (
⊥
‘𝑊) ≤ ( ⊥
‘𝑊)) |
26 | 18, 23, 25 | syl2anc 691 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ( ⊥ ‘𝑊) ≤ 𝑊) → ( ⊥ ‘𝑊) ≤ ( ⊥ ‘𝑊)) |
27 | | eqid 2610 |
. . . . . . 7
⊢
(meet‘𝐾) =
(meet‘𝐾) |
28 | 4, 24, 27 | latlem12 16901 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (( ⊥
‘𝑊) ∈
(Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾) ∧ ( ⊥ ‘𝑊) ∈ (Base‘𝐾))) → ((( ⊥
‘𝑊) ≤ 𝑊 ∧ ( ⊥ ‘𝑊) ≤ ( ⊥ ‘𝑊)) ↔ ( ⊥ ‘𝑊) ≤ (𝑊(meet‘𝐾)( ⊥ ‘𝑊)))) |
29 | 18, 23, 21, 23, 28 | syl13anc 1320 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ( ⊥ ‘𝑊) ≤ 𝑊) → ((( ⊥ ‘𝑊) ≤ 𝑊 ∧ ( ⊥ ‘𝑊) ≤ ( ⊥ ‘𝑊)) ↔ ( ⊥ ‘𝑊) ≤ (𝑊(meet‘𝐾)( ⊥ ‘𝑊)))) |
30 | 16, 26, 29 | mpbi2and 958 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ( ⊥ ‘𝑊) ≤ 𝑊) → ( ⊥ ‘𝑊) ≤ (𝑊(meet‘𝐾)( ⊥ ‘𝑊))) |
31 | 4, 7, 27, 12 | opnoncon 33513 |
. . . . 5
⊢ ((𝐾 ∈ OP ∧ 𝑊 ∈ (Base‘𝐾)) → (𝑊(meet‘𝐾)( ⊥ ‘𝑊)) = (0.‘𝐾)) |
32 | 20, 21, 31 | syl2anc 691 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ( ⊥ ‘𝑊) ≤ 𝑊) → (𝑊(meet‘𝐾)( ⊥ ‘𝑊)) = (0.‘𝐾)) |
33 | 30, 32 | breqtrd 4609 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ( ⊥ ‘𝑊) ≤ 𝑊) → ( ⊥ ‘𝑊) ≤ (0.‘𝐾)) |
34 | 4, 24, 12 | ople0 33492 |
. . . 4
⊢ ((𝐾 ∈ OP ∧ ( ⊥
‘𝑊) ∈
(Base‘𝐾)) → ((
⊥
‘𝑊) ≤
(0.‘𝐾) ↔ ( ⊥
‘𝑊) = (0.‘𝐾))) |
35 | 20, 23, 34 | syl2anc 691 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ( ⊥ ‘𝑊) ≤ 𝑊) → (( ⊥ ‘𝑊) ≤ (0.‘𝐾) ↔ ( ⊥ ‘𝑊) = (0.‘𝐾))) |
36 | 33, 35 | mpbid 221 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ( ⊥ ‘𝑊) ≤ 𝑊) → ( ⊥ ‘𝑊) = (0.‘𝐾)) |
37 | 15, 36 | mtand 689 |
1
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ¬ ( ⊥ ‘𝑊) ≤ 𝑊) |