Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lhpmcvr | Structured version Visualization version GIF version |
Description: The meet of a lattice hyperplane with an element not under it is covered by the element. (Contributed by NM, 7-Dec-2012.) |
Ref | Expression |
---|---|
lhpmcvr.b | ⊢ 𝐵 = (Base‘𝐾) |
lhpmcvr.l | ⊢ ≤ = (le‘𝐾) |
lhpmcvr.m | ⊢ ∧ = (meet‘𝐾) |
lhpmcvr.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
lhpmcvr.h | ⊢ 𝐻 = (LHyp‘𝐾) |
Ref | Expression |
---|---|
lhpmcvr | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → (𝑋 ∧ 𝑊)𝐶𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hllat 33668 | . . . 4 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
2 | 1 | ad2antrr 758 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → 𝐾 ∈ Lat) |
3 | simprl 790 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → 𝑋 ∈ 𝐵) | |
4 | lhpmcvr.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
5 | lhpmcvr.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
6 | 4, 5 | lhpbase 34302 | . . . 4 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) |
7 | 6 | ad2antlr 759 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → 𝑊 ∈ 𝐵) |
8 | lhpmcvr.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
9 | 4, 8 | latmcom 16898 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑋 ∧ 𝑊) = (𝑊 ∧ 𝑋)) |
10 | 2, 3, 7, 9 | syl3anc 1318 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → (𝑋 ∧ 𝑊) = (𝑊 ∧ 𝑋)) |
11 | eqid 2610 | . . . . . 6 ⊢ (1.‘𝐾) = (1.‘𝐾) | |
12 | lhpmcvr.c | . . . . . 6 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
13 | 11, 12, 5 | lhp1cvr 34303 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑊𝐶(1.‘𝐾)) |
14 | 13 | adantr 480 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → 𝑊𝐶(1.‘𝐾)) |
15 | lhpmcvr.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
16 | eqid 2610 | . . . . 5 ⊢ (join‘𝐾) = (join‘𝐾) | |
17 | 4, 15, 16, 11, 5 | lhpj1 34326 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → (𝑊(join‘𝐾)𝑋) = (1.‘𝐾)) |
18 | 14, 17 | breqtrrd 4611 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → 𝑊𝐶(𝑊(join‘𝐾)𝑋)) |
19 | simpll 786 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → 𝐾 ∈ HL) | |
20 | 4, 16, 8, 12 | cvrexch 33724 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ((𝑊 ∧ 𝑋)𝐶𝑋 ↔ 𝑊𝐶(𝑊(join‘𝐾)𝑋))) |
21 | 19, 7, 3, 20 | syl3anc 1318 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → ((𝑊 ∧ 𝑋)𝐶𝑋 ↔ 𝑊𝐶(𝑊(join‘𝐾)𝑋))) |
22 | 18, 21 | mpbird 246 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → (𝑊 ∧ 𝑋)𝐶𝑋) |
23 | 10, 22 | eqbrtrd 4605 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → (𝑋 ∧ 𝑊)𝐶𝑋) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 195 ∧ wa 383 = wceq 1475 ∈ wcel 1977 class class class wbr 4583 ‘cfv 5804 (class class class)co 6549 Basecbs 15695 lecple 15775 joincjn 16767 meetcmee 16768 1.cp1 16861 Latclat 16868 ⋖ ccvr 33567 HLchlt 33655 LHypclh 34288 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-preset 16751 df-poset 16769 df-plt 16781 df-lub 16797 df-glb 16798 df-join 16799 df-meet 16800 df-p0 16862 df-p1 16863 df-lat 16869 df-clat 16931 df-oposet 33481 df-ol 33483 df-oml 33484 df-covers 33571 df-ats 33572 df-atl 33603 df-cvlat 33627 df-hlat 33656 df-lhyp 34292 |
This theorem is referenced by: lhpmcvr2 34328 lhpm0atN 34333 |
Copyright terms: Public domain | W3C validator |