Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpmatb Structured version   Visualization version   GIF version

Theorem lhpmatb 34335
Description: An element covered by the lattice unit, when conjoined with an atom, equals zero iff the atom is not under it. (Contributed by NM, 15-Jun-2013.)
Hypotheses
Ref Expression
lhpmat.l = (le‘𝐾)
lhpmat.m = (meet‘𝐾)
lhpmat.z 0 = (0.‘𝐾)
lhpmat.a 𝐴 = (Atoms‘𝐾)
lhpmat.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpmatb (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝐴) → (¬ 𝑃 𝑊 ↔ (𝑃 𝑊) = 0 ))

Proof of Theorem lhpmatb
StepHypRef Expression
1 lhpmat.l . . . 4 = (le‘𝐾)
2 lhpmat.m . . . 4 = (meet‘𝐾)
3 lhpmat.z . . . 4 0 = (0.‘𝐾)
4 lhpmat.a . . . 4 𝐴 = (Atoms‘𝐾)
5 lhpmat.h . . . 4 𝐻 = (LHyp‘𝐾)
61, 2, 3, 4, 5lhpmat 34334 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 𝑊) = 0 )
76anassrs 678 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝐴) ∧ ¬ 𝑃 𝑊) → (𝑃 𝑊) = 0 )
8 hlatl 33665 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
98ad3antrrr 762 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝐴) ∧ (𝑃 𝑊) = 0 ) → 𝐾 ∈ AtLat)
10 simplr 788 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝐴) ∧ (𝑃 𝑊) = 0 ) → 𝑃𝐴)
113, 4atn0 33613 . . . . . 6 ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → 𝑃0 )
1211necomd 2837 . . . . 5 ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → 0𝑃)
139, 10, 12syl2anc 691 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝐴) ∧ (𝑃 𝑊) = 0 ) → 0𝑃)
14 neeq1 2844 . . . . 5 ((𝑃 𝑊) = 0 → ((𝑃 𝑊) ≠ 𝑃0𝑃))
1514adantl 481 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝐴) ∧ (𝑃 𝑊) = 0 ) → ((𝑃 𝑊) ≠ 𝑃0𝑃))
1613, 15mpbird 246 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝐴) ∧ (𝑃 𝑊) = 0 ) → (𝑃 𝑊) ≠ 𝑃)
17 hllat 33668 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ Lat)
1817ad3antrrr 762 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝐴) ∧ (𝑃 𝑊) = 0 ) → 𝐾 ∈ Lat)
19 eqid 2610 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
2019, 4atbase 33594 . . . . . 6 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
2110, 20syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝐴) ∧ (𝑃 𝑊) = 0 ) → 𝑃 ∈ (Base‘𝐾))
2219, 5lhpbase 34302 . . . . . 6 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
2322ad3antlr 763 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝐴) ∧ (𝑃 𝑊) = 0 ) → 𝑊 ∈ (Base‘𝐾))
2419, 1, 2latleeqm1 16902 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → (𝑃 𝑊 ↔ (𝑃 𝑊) = 𝑃))
2518, 21, 23, 24syl3anc 1318 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝐴) ∧ (𝑃 𝑊) = 0 ) → (𝑃 𝑊 ↔ (𝑃 𝑊) = 𝑃))
2625necon3bbid 2819 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝐴) ∧ (𝑃 𝑊) = 0 ) → (¬ 𝑃 𝑊 ↔ (𝑃 𝑊) ≠ 𝑃))
2716, 26mpbird 246 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝐴) ∧ (𝑃 𝑊) = 0 ) → ¬ 𝑃 𝑊)
287, 27impbida 873 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝐴) → (¬ 𝑃 𝑊 ↔ (𝑃 𝑊) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wne 2780   class class class wbr 4583  cfv 5804  (class class class)co 6549  Basecbs 15695  lecple 15775  meetcmee 16768  0.cp0 16860  Latclat 16868  Atomscatm 33568  AtLatcal 33569  HLchlt 33655  LHypclh 34288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-lat 16869  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-lhyp 34292
This theorem is referenced by:  cdlemh  35123
  Copyright terms: Public domain W3C validator