Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpexle3lem Structured version   Visualization version   GIF version

Theorem lhpexle3lem 34315
Description: There exists atom under a co-atom different from any 3 other atoms. TODO: study if adant*,simp* usage can be improved. (Contributed by NM, 9-Jul-2013.)
Hypotheses
Ref Expression
lhpex1.l = (le‘𝐾)
lhpex1.a 𝐴 = (Atoms‘𝐾)
lhpex1.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpexle3lem (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))
Distinct variable groups:   ,𝑝   𝐴,𝑝   𝐻,𝑝   𝐾,𝑝   𝑊,𝑝   𝑋,𝑝   𝑌,𝑝   𝑍,𝑝

Proof of Theorem lhpexle3lem
StepHypRef Expression
1 simpl1 1057 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋 = 𝑌) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 lhpex1.l . . . . 5 = (le‘𝐾)
3 lhpex1.a . . . . 5 𝐴 = (Atoms‘𝐾)
4 lhpex1.h . . . . 5 𝐻 = (LHyp‘𝐾)
52, 3, 4lhpexle2 34314 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋𝑝𝑍))
61, 5syl 17 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋 = 𝑌) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋𝑝𝑍))
7 simp31 1090 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋 = 𝑌) ∧ 𝑝𝐴 ∧ (𝑝 𝑊𝑝𝑋𝑝𝑍)) → 𝑝 𝑊)
8 simp32 1091 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋 = 𝑌) ∧ 𝑝𝐴 ∧ (𝑝 𝑊𝑝𝑋𝑝𝑍)) → 𝑝𝑋)
9 simp1r 1079 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋 = 𝑌) ∧ 𝑝𝐴 ∧ (𝑝 𝑊𝑝𝑋𝑝𝑍)) → 𝑋 = 𝑌)
108, 9neeqtrd 2851 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋 = 𝑌) ∧ 𝑝𝐴 ∧ (𝑝 𝑊𝑝𝑋𝑝𝑍)) → 𝑝𝑌)
11 simp33 1092 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋 = 𝑌) ∧ 𝑝𝐴 ∧ (𝑝 𝑊𝑝𝑋𝑝𝑍)) → 𝑝𝑍)
128, 10, 113jca 1235 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋 = 𝑌) ∧ 𝑝𝐴 ∧ (𝑝 𝑊𝑝𝑋𝑝𝑍)) → (𝑝𝑋𝑝𝑌𝑝𝑍))
137, 12jca 553 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋 = 𝑌) ∧ 𝑝𝐴 ∧ (𝑝 𝑊𝑝𝑋𝑝𝑍)) → (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))
14133exp 1256 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋 = 𝑌) → (𝑝𝐴 → ((𝑝 𝑊𝑝𝑋𝑝𝑍) → (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))))
1514reximdvai 2998 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋 = 𝑌) → (∃𝑝𝐴 (𝑝 𝑊𝑝𝑋𝑝𝑍) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍))))
166, 15mpd 15 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋 = 𝑌) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))
17 simprrr 801 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → 𝑝 𝑊)
18 simp11l 1165 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) → 𝐾 ∈ HL)
1918adantr 480 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → 𝐾 ∈ HL)
20 hllat 33668 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ Lat)
2119, 20syl 17 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → 𝐾 ∈ Lat)
22 eqid 2610 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
2322, 3atbase 33594 . . . . . . . . 9 (𝑝𝐴𝑝 ∈ (Base‘𝐾))
2423ad2antrl 760 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → 𝑝 ∈ (Base‘𝐾))
25 simp121 1186 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) → 𝑋𝐴)
2625adantr 480 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → 𝑋𝐴)
2722, 3atbase 33594 . . . . . . . . 9 (𝑋𝐴𝑋 ∈ (Base‘𝐾))
2826, 27syl 17 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → 𝑋 ∈ (Base‘𝐾))
29 simp122 1187 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) → 𝑌𝐴)
3029adantr 480 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → 𝑌𝐴)
3122, 3atbase 33594 . . . . . . . . 9 (𝑌𝐴𝑌 ∈ (Base‘𝐾))
3230, 31syl 17 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → 𝑌 ∈ (Base‘𝐾))
33 simprrl 800 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → ¬ 𝑝 (𝑋(join‘𝐾)𝑌))
34 eqid 2610 . . . . . . . . 9 (join‘𝐾) = (join‘𝐾)
3522, 2, 34latnlej1l 16892 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑝 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) ∧ ¬ 𝑝 (𝑋(join‘𝐾)𝑌)) → 𝑝𝑋)
3621, 24, 28, 32, 33, 35syl131anc 1331 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → 𝑝𝑋)
3722, 2, 34latnlej1r 16893 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑝 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) ∧ ¬ 𝑝 (𝑋(join‘𝐾)𝑌)) → 𝑝𝑌)
3821, 24, 28, 32, 33, 37syl131anc 1331 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → 𝑝𝑌)
39 simpl3 1059 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → 𝑍 (𝑋(join‘𝐾)𝑌))
40 nbrne2 4603 . . . . . . . . 9 ((𝑍 (𝑋(join‘𝐾)𝑌) ∧ ¬ 𝑝 (𝑋(join‘𝐾)𝑌)) → 𝑍𝑝)
4140necomd 2837 . . . . . . . 8 ((𝑍 (𝑋(join‘𝐾)𝑌) ∧ ¬ 𝑝 (𝑋(join‘𝐾)𝑌)) → 𝑝𝑍)
4239, 33, 41syl2anc 691 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → 𝑝𝑍)
4336, 38, 423jca 1235 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → (𝑝𝑋𝑝𝑌𝑝𝑍))
4417, 43jca 553 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (¬ 𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))) → (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))
45 simp11 1084 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
46 simp131 1189 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) → 𝑋 𝑊)
47 simp132 1190 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) → 𝑌 𝑊)
48 eqid 2610 . . . . . . . 8 (lt‘𝐾) = (lt‘𝐾)
492, 48, 34, 3, 4lhp2lt 34305 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) → (𝑋(join‘𝐾)𝑌)(lt‘𝐾)𝑊)
5045, 25, 46, 29, 47, 49syl122anc 1327 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) → (𝑋(join‘𝐾)𝑌)(lt‘𝐾)𝑊)
5122, 34, 3hlatjcl 33671 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → (𝑋(join‘𝐾)𝑌) ∈ (Base‘𝐾))
5218, 25, 29, 51syl3anc 1318 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) → (𝑋(join‘𝐾)𝑌) ∈ (Base‘𝐾))
53 simp11r 1166 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) → 𝑊𝐻)
5422, 4lhpbase 34302 . . . . . . . 8 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
5553, 54syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) → 𝑊 ∈ (Base‘𝐾))
5622, 2, 48, 3hlrelat1 33704 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋(join‘𝐾)𝑌) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑋(join‘𝐾)𝑌)(lt‘𝐾)𝑊 → ∃𝑝𝐴𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊)))
5718, 52, 55, 56syl3anc 1318 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) → ((𝑋(join‘𝐾)𝑌)(lt‘𝐾)𝑊 → ∃𝑝𝐴𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊)))
5850, 57mpd 15 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) → ∃𝑝𝐴𝑝 (𝑋(join‘𝐾)𝑌) ∧ 𝑝 𝑊))
5944, 58reximddv 3001 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌𝑍 (𝑋(join‘𝐾)𝑌)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))
60593expa 1257 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌) ∧ 𝑍 (𝑋(join‘𝐾)𝑌)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))
61 simp11l 1165 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) → 𝐾 ∈ HL)
6261adantr 480 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝐾 ∈ HL)
6362, 20syl 17 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝐾 ∈ Lat)
6423ad2antrl 760 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑝 ∈ (Base‘𝐾))
65 simp121 1186 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) → 𝑋𝐴)
6665adantr 480 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑋𝐴)
67 simp122 1187 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) → 𝑌𝐴)
6867adantr 480 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑌𝐴)
6962, 66, 68, 51syl3anc 1318 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → (𝑋(join‘𝐾)𝑌) ∈ (Base‘𝐾))
70 simp11r 1166 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) → 𝑊𝐻)
7170adantr 480 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑊𝐻)
7271, 54syl 17 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑊 ∈ (Base‘𝐾))
73 simprr3 1104 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑝 (𝑋(join‘𝐾)𝑌))
74 simp131 1189 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) → 𝑋 𝑊)
7574adantr 480 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑋 𝑊)
76 simp132 1190 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) → 𝑌 𝑊)
7776adantr 480 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑌 𝑊)
7866, 27syl 17 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑋 ∈ (Base‘𝐾))
7968, 31syl 17 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑌 ∈ (Base‘𝐾))
8022, 2, 34latjle12 16885 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑋 𝑊𝑌 𝑊) ↔ (𝑋(join‘𝐾)𝑌) 𝑊))
8163, 78, 79, 72, 80syl13anc 1320 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → ((𝑋 𝑊𝑌 𝑊) ↔ (𝑋(join‘𝐾)𝑌) 𝑊))
8275, 77, 81mpbi2and 958 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → (𝑋(join‘𝐾)𝑌) 𝑊)
8322, 2, 63, 64, 69, 72, 73, 82lattrd 16881 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑝 𝑊)
84 simprr1 1102 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑝𝑋)
85 simprr2 1103 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑝𝑌)
86 simpl3 1059 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → ¬ 𝑍 (𝑋(join‘𝐾)𝑌))
87 nbrne2 4603 . . . . . . . 8 ((𝑝 (𝑋(join‘𝐾)𝑌) ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) → 𝑝𝑍)
8873, 86, 87syl2anc 691 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑝𝑍)
8984, 85, 883jca 1235 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → (𝑝𝑋𝑝𝑌𝑝𝑍))
9083, 89jca 553 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) ∧ (𝑝𝐴 ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))
91 simp2 1055 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) → 𝑋𝑌)
922, 34, 3hlsupr 33690 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑋𝑌) → ∃𝑝𝐴 (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))
9361, 65, 67, 91, 92syl31anc 1321 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) → ∃𝑝𝐴 (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))
9490, 93reximddv 3001 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌 ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))
95943expa 1257 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌) ∧ ¬ 𝑍 (𝑋(join‘𝐾)𝑌)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))
9660, 95pm2.61dan 828 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) ∧ 𝑋𝑌) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))
9716, 96pm2.61dane 2869 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wrex 2897   class class class wbr 4583  cfv 5804  (class class class)co 6549  Basecbs 15695  lecple 15775  ltcplt 16764  joincjn 16767  Latclat 16868  Atomscatm 33568  HLchlt 33655  LHypclh 34288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-p1 16863  df-lat 16869  df-clat 16931  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-lhyp 34292
This theorem is referenced by:  lhpexle3  34316
  Copyright terms: Public domain W3C validator