Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lhpex2leN | Structured version Visualization version GIF version |
Description: There exist at least two different atoms under a co-atom. This allows us to create a line under the co-atom. TODO: is this needed? (Contributed by NM, 1-Jun-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lhp2at.l | ⊢ ≤ = (le‘𝐾) |
lhp2at.a | ⊢ 𝐴 = (Atoms‘𝐾) |
lhp2at.h | ⊢ 𝐻 = (LHyp‘𝐾) |
Ref | Expression |
---|---|
lhpex2leN | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ 𝑞 ≤ 𝑊 ∧ 𝑝 ≠ 𝑞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprr 792 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ 𝑝 ≤ 𝑊)) → 𝑝 ≤ 𝑊) | |
2 | lhp2at.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
3 | lhp2at.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | lhp2at.h | . . . . . 6 ⊢ 𝐻 = (LHyp‘𝐾) | |
5 | 2, 3, 4 | lhpexle1 34312 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑞 ∈ 𝐴 (𝑞 ≤ 𝑊 ∧ 𝑞 ≠ 𝑝)) |
6 | 5 | adantr 480 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ 𝑝 ≤ 𝑊)) → ∃𝑞 ∈ 𝐴 (𝑞 ≤ 𝑊 ∧ 𝑞 ≠ 𝑝)) |
7 | 1, 6 | jca 553 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ 𝑝 ≤ 𝑊)) → (𝑝 ≤ 𝑊 ∧ ∃𝑞 ∈ 𝐴 (𝑞 ≤ 𝑊 ∧ 𝑞 ≠ 𝑝))) |
8 | necom 2835 | . . . . . . 7 ⊢ (𝑝 ≠ 𝑞 ↔ 𝑞 ≠ 𝑝) | |
9 | 8 | 3anbi3i 1248 | . . . . . 6 ⊢ ((𝑝 ≤ 𝑊 ∧ 𝑞 ≤ 𝑊 ∧ 𝑝 ≠ 𝑞) ↔ (𝑝 ≤ 𝑊 ∧ 𝑞 ≤ 𝑊 ∧ 𝑞 ≠ 𝑝)) |
10 | 3anass 1035 | . . . . . 6 ⊢ ((𝑝 ≤ 𝑊 ∧ 𝑞 ≤ 𝑊 ∧ 𝑞 ≠ 𝑝) ↔ (𝑝 ≤ 𝑊 ∧ (𝑞 ≤ 𝑊 ∧ 𝑞 ≠ 𝑝))) | |
11 | 9, 10 | bitri 263 | . . . . 5 ⊢ ((𝑝 ≤ 𝑊 ∧ 𝑞 ≤ 𝑊 ∧ 𝑝 ≠ 𝑞) ↔ (𝑝 ≤ 𝑊 ∧ (𝑞 ≤ 𝑊 ∧ 𝑞 ≠ 𝑝))) |
12 | 11 | rexbii 3023 | . . . 4 ⊢ (∃𝑞 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ 𝑞 ≤ 𝑊 ∧ 𝑝 ≠ 𝑞) ↔ ∃𝑞 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ (𝑞 ≤ 𝑊 ∧ 𝑞 ≠ 𝑝))) |
13 | r19.42v 3073 | . . . 4 ⊢ (∃𝑞 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ (𝑞 ≤ 𝑊 ∧ 𝑞 ≠ 𝑝)) ↔ (𝑝 ≤ 𝑊 ∧ ∃𝑞 ∈ 𝐴 (𝑞 ≤ 𝑊 ∧ 𝑞 ≠ 𝑝))) | |
14 | 12, 13 | bitr2i 264 | . . 3 ⊢ ((𝑝 ≤ 𝑊 ∧ ∃𝑞 ∈ 𝐴 (𝑞 ≤ 𝑊 ∧ 𝑞 ≠ 𝑝)) ↔ ∃𝑞 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ 𝑞 ≤ 𝑊 ∧ 𝑝 ≠ 𝑞)) |
15 | 7, 14 | sylib 207 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ 𝑝 ≤ 𝑊)) → ∃𝑞 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ 𝑞 ≤ 𝑊 ∧ 𝑝 ≠ 𝑞)) |
16 | 2, 3, 4 | lhpexle 34309 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑝 ∈ 𝐴 𝑝 ≤ 𝑊) |
17 | 15, 16 | reximddv 3001 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ 𝑞 ≤ 𝑊 ∧ 𝑝 ≠ 𝑞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 ≠ wne 2780 ∃wrex 2897 class class class wbr 4583 ‘cfv 5804 lecple 15775 Atomscatm 33568 HLchlt 33655 LHypclh 34288 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-preset 16751 df-poset 16769 df-plt 16781 df-lub 16797 df-glb 16798 df-join 16799 df-meet 16800 df-p0 16862 df-p1 16863 df-lat 16869 df-clat 16931 df-oposet 33481 df-ol 33483 df-oml 33484 df-covers 33571 df-ats 33572 df-atl 33603 df-cvlat 33627 df-hlat 33656 df-lhyp 34292 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |