Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgseisen Structured version   Visualization version   GIF version

Theorem lgseisen 24904
 Description: Eisenstein's lemma, an expression for (𝑃 /L 𝑄) when 𝑃, 𝑄 are distinct odd primes. (Contributed by Mario Carneiro, 18-Jun-2015.)
Hypotheses
Ref Expression
lgseisen.1 (𝜑𝑃 ∈ (ℙ ∖ {2}))
lgseisen.2 (𝜑𝑄 ∈ (ℙ ∖ {2}))
lgseisen.3 (𝜑𝑃𝑄)
Assertion
Ref Expression
lgseisen (𝜑 → (𝑄 /L 𝑃) = (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
Distinct variable groups:   𝑥,𝑃   𝜑,𝑥   𝑥,𝑄

Proof of Theorem lgseisen
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 lgseisen.2 . . . . 5 (𝜑𝑄 ∈ (ℙ ∖ {2}))
21eldifad 3552 . . . 4 (𝜑𝑄 ∈ ℙ)
3 prmz 15227 . . . 4 (𝑄 ∈ ℙ → 𝑄 ∈ ℤ)
42, 3syl 17 . . 3 (𝜑𝑄 ∈ ℤ)
5 lgseisen.1 . . 3 (𝜑𝑃 ∈ (ℙ ∖ {2}))
6 lgsval3 24840 . . 3 ((𝑄 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑄 /L 𝑃) = ((((𝑄↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1))
74, 5, 6syl2anc 691 . 2 (𝜑 → (𝑄 /L 𝑃) = ((((𝑄↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1))
8 prmnn 15226 . . . . . . . . 9 (𝑄 ∈ ℙ → 𝑄 ∈ ℕ)
92, 8syl 17 . . . . . . . 8 (𝜑𝑄 ∈ ℕ)
10 oddprm 15353 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ)
115, 10syl 17 . . . . . . . . 9 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ)
1211nnnn0d 11228 . . . . . . . 8 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ0)
139, 12nnexpcld 12892 . . . . . . 7 (𝜑 → (𝑄↑((𝑃 − 1) / 2)) ∈ ℕ)
1413nnred 10912 . . . . . 6 (𝜑 → (𝑄↑((𝑃 − 1) / 2)) ∈ ℝ)
15 neg1rr 11002 . . . . . . . 8 -1 ∈ ℝ
1615a1i 11 . . . . . . 7 (𝜑 → -1 ∈ ℝ)
17 neg1ne0 11003 . . . . . . . 8 -1 ≠ 0
1817a1i 11 . . . . . . 7 (𝜑 → -1 ≠ 0)
19 fzfid 12634 . . . . . . . 8 (𝜑 → (1...((𝑃 − 1) / 2)) ∈ Fin)
209nnred 10912 . . . . . . . . . . . 12 (𝜑𝑄 ∈ ℝ)
215eldifad 3552 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ ℙ)
22 prmnn 15226 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
2321, 22syl 17 . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℕ)
2420, 23nndivred 10946 . . . . . . . . . . 11 (𝜑 → (𝑄 / 𝑃) ∈ ℝ)
2524adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑄 / 𝑃) ∈ ℝ)
26 2re 10967 . . . . . . . . . . 11 2 ∈ ℝ
27 elfznn 12241 . . . . . . . . . . . . 13 (𝑥 ∈ (1...((𝑃 − 1) / 2)) → 𝑥 ∈ ℕ)
2827adantl 481 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑥 ∈ ℕ)
2928nnred 10912 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑥 ∈ ℝ)
30 remulcl 9900 . . . . . . . . . . 11 ((2 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (2 · 𝑥) ∈ ℝ)
3126, 29, 30sylancr 694 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ∈ ℝ)
3225, 31remulcld 9949 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑄 / 𝑃) · (2 · 𝑥)) ∈ ℝ)
3332flcld 12461 . . . . . . . 8 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℤ)
3419, 33fsumzcl 14313 . . . . . . 7 (𝜑 → Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℤ)
3516, 18, 34reexpclzd 12896 . . . . . 6 (𝜑 → (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℝ)
36 1re 9918 . . . . . . 7 1 ∈ ℝ
3736a1i 11 . . . . . 6 (𝜑 → 1 ∈ ℝ)
3823nnrpd 11746 . . . . . 6 (𝜑𝑃 ∈ ℝ+)
39 lgseisen.3 . . . . . . 7 (𝜑𝑃𝑄)
40 eqid 2610 . . . . . . 7 ((𝑄 · (2 · 𝑥)) mod 𝑃) = ((𝑄 · (2 · 𝑥)) mod 𝑃)
41 eqid 2610 . . . . . . 7 (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((((-1↑((𝑄 · (2 · 𝑥)) mod 𝑃)) · ((𝑄 · (2 · 𝑥)) mod 𝑃)) mod 𝑃) / 2)) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((((-1↑((𝑄 · (2 · 𝑥)) mod 𝑃)) · ((𝑄 · (2 · 𝑥)) mod 𝑃)) mod 𝑃) / 2))
42 eqid 2610 . . . . . . 7 ((𝑄 · (2 · 𝑦)) mod 𝑃) = ((𝑄 · (2 · 𝑦)) mod 𝑃)
43 eqid 2610 . . . . . . 7 (ℤ/nℤ‘𝑃) = (ℤ/nℤ‘𝑃)
44 eqid 2610 . . . . . . 7 (mulGrp‘(ℤ/nℤ‘𝑃)) = (mulGrp‘(ℤ/nℤ‘𝑃))
45 eqid 2610 . . . . . . 7 (ℤRHom‘(ℤ/nℤ‘𝑃)) = (ℤRHom‘(ℤ/nℤ‘𝑃))
465, 1, 39, 40, 41, 42, 43, 44, 45lgseisenlem4 24903 . . . . . 6 (𝜑 → ((𝑄↑((𝑃 − 1) / 2)) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) mod 𝑃))
47 modadd1 12569 . . . . . 6 ((((𝑄↑((𝑃 − 1) / 2)) ∈ ℝ ∧ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℝ) ∧ (1 ∈ ℝ ∧ 𝑃 ∈ ℝ+) ∧ ((𝑄↑((𝑃 − 1) / 2)) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) mod 𝑃)) → (((𝑄↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) mod 𝑃))
4814, 35, 37, 38, 46, 47syl221anc 1329 . . . . 5 (𝜑 → (((𝑄↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) mod 𝑃))
49 peano2re 10088 . . . . . . 7 ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℝ → ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) ∈ ℝ)
5035, 49syl 17 . . . . . 6 (𝜑 → ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) ∈ ℝ)
51 df-neg 10148 . . . . . . . 8 -1 = (0 − 1)
52 neg1cn 11001 . . . . . . . . . . . . . 14 -1 ∈ ℂ
5352a1i 11 . . . . . . . . . . . . 13 (𝜑 → -1 ∈ ℂ)
54 absexpz 13893 . . . . . . . . . . . . 13 ((-1 ∈ ℂ ∧ -1 ≠ 0 ∧ Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℤ) → (abs‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) = ((abs‘-1)↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
5553, 18, 34, 54syl3anc 1318 . . . . . . . . . . . 12 (𝜑 → (abs‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) = ((abs‘-1)↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
56 ax-1cn 9873 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
5756absnegi 13987 . . . . . . . . . . . . . . 15 (abs‘-1) = (abs‘1)
58 abs1 13885 . . . . . . . . . . . . . . 15 (abs‘1) = 1
5957, 58eqtri 2632 . . . . . . . . . . . . . 14 (abs‘-1) = 1
6059oveq1i 6559 . . . . . . . . . . . . 13 ((abs‘-1)↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) = (1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))
61 1exp 12751 . . . . . . . . . . . . . 14 𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℤ → (1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) = 1)
6234, 61syl 17 . . . . . . . . . . . . 13 (𝜑 → (1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) = 1)
6360, 62syl5eq 2656 . . . . . . . . . . . 12 (𝜑 → ((abs‘-1)↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) = 1)
6455, 63eqtrd 2644 . . . . . . . . . . 11 (𝜑 → (abs‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) = 1)
65 1le1 10534 . . . . . . . . . . 11 1 ≤ 1
6664, 65syl6eqbr 4622 . . . . . . . . . 10 (𝜑 → (abs‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) ≤ 1)
67 absle 13903 . . . . . . . . . . 11 (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) ≤ 1 ↔ (-1 ≤ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∧ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ≤ 1)))
6835, 36, 67sylancl 693 . . . . . . . . . 10 (𝜑 → ((abs‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) ≤ 1 ↔ (-1 ≤ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∧ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ≤ 1)))
6966, 68mpbid 221 . . . . . . . . 9 (𝜑 → (-1 ≤ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∧ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ≤ 1))
7069simpld 474 . . . . . . . 8 (𝜑 → -1 ≤ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
7151, 70syl5eqbrr 4619 . . . . . . 7 (𝜑 → (0 − 1) ≤ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
72 0red 9920 . . . . . . . 8 (𝜑 → 0 ∈ ℝ)
7372, 37, 35lesubaddd 10503 . . . . . . 7 (𝜑 → ((0 − 1) ≤ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ↔ 0 ≤ ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1)))
7471, 73mpbid 221 . . . . . 6 (𝜑 → 0 ≤ ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1))
7523nnred 10912 . . . . . . . . 9 (𝜑𝑃 ∈ ℝ)
76 peano2rem 10227 . . . . . . . . 9 (𝑃 ∈ ℝ → (𝑃 − 1) ∈ ℝ)
7775, 76syl 17 . . . . . . . 8 (𝜑 → (𝑃 − 1) ∈ ℝ)
7869simprd 478 . . . . . . . 8 (𝜑 → (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ≤ 1)
79 df-2 10956 . . . . . . . . . 10 2 = (1 + 1)
80 eldifsni 4261 . . . . . . . . . . . 12 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ≠ 2)
815, 80syl 17 . . . . . . . . . . 11 (𝜑𝑃 ≠ 2)
8226a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ∈ ℝ)
83 prmuz2 15246 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
84 eluzle 11576 . . . . . . . . . . . . 13 (𝑃 ∈ (ℤ‘2) → 2 ≤ 𝑃)
8521, 83, 843syl 18 . . . . . . . . . . . 12 (𝜑 → 2 ≤ 𝑃)
8682, 75, 85leltned 10069 . . . . . . . . . . 11 (𝜑 → (2 < 𝑃𝑃 ≠ 2))
8781, 86mpbird 246 . . . . . . . . . 10 (𝜑 → 2 < 𝑃)
8879, 87syl5eqbrr 4619 . . . . . . . . 9 (𝜑 → (1 + 1) < 𝑃)
8937, 37, 75ltaddsubd 10506 . . . . . . . . 9 (𝜑 → ((1 + 1) < 𝑃 ↔ 1 < (𝑃 − 1)))
9088, 89mpbid 221 . . . . . . . 8 (𝜑 → 1 < (𝑃 − 1))
9135, 37, 77, 78, 90lelttrd 10074 . . . . . . 7 (𝜑 → (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) < (𝑃 − 1))
9235, 37, 75ltaddsubd 10506 . . . . . . 7 (𝜑 → (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) < 𝑃 ↔ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) < (𝑃 − 1)))
9391, 92mpbird 246 . . . . . 6 (𝜑 → ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) < 𝑃)
94 modid 12557 . . . . . 6 (((((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) ∈ ℝ ∧ 𝑃 ∈ ℝ+) ∧ (0 ≤ ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) ∧ ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) < 𝑃)) → (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1))
9550, 38, 74, 93, 94syl22anc 1319 . . . . 5 (𝜑 → (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1))
9648, 95eqtrd 2644 . . . 4 (𝜑 → (((𝑄↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1))
9796oveq1d 6564 . . 3 (𝜑 → ((((𝑄↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) = (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) − 1))
9835recnd 9947 . . . 4 (𝜑 → (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℂ)
99 pncan 10166 . . . 4 (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℂ ∧ 1 ∈ ℂ) → (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) − 1) = (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
10098, 56, 99sylancl 693 . . 3 (𝜑 → (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) − 1) = (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
10197, 100eqtrd 2644 . 2 (𝜑 → ((((𝑄↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) = (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
1027, 101eqtrd 2644 1 (𝜑 → (𝑄 /L 𝑃) = (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780   ∖ cdif 3537  {csn 4125   class class class wbr 4583   ↦ cmpt 4643  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  ℝcr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953   ≤ cle 9954   − cmin 10145  -cneg 10146   / cdiv 10563  ℕcn 10897  2c2 10947  ℤcz 11254  ℤ≥cuz 11563  ℝ+crp 11708  ...cfz 12197  ⌊cfl 12453   mod cmo 12530  ↑cexp 12722  abscabs 13822  Σcsu 14264  ℙcprime 15223  mulGrpcmgp 18312  ℤRHomczrh 19667  ℤ/nℤczn 19670   /L clgs 24819 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-ec 7631  df-qs 7635  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-xnn0 11241  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-dvds 14822  df-gcd 15055  df-prm 15224  df-phi 15309  df-pc 15380  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-0g 15925  df-gsum 15926  df-imas 15991  df-qus 15992  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-subg 17414  df-nsg 17415  df-eqg 17416  df-ghm 17481  df-cntz 17573  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-dvr 18506  df-rnghom 18538  df-drng 18572  df-field 18573  df-subrg 18601  df-lmod 18688  df-lss 18754  df-lsp 18793  df-sra 18993  df-rgmod 18994  df-lidl 18995  df-rsp 18996  df-2idl 19053  df-nzr 19079  df-rlreg 19104  df-domn 19105  df-idom 19106  df-cnfld 19568  df-zring 19638  df-zrh 19671  df-zn 19674  df-lgs 24820 This theorem is referenced by:  lgsquadlem2  24906
 Copyright terms: Public domain W3C validator