Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsdir2 Structured version   Visualization version   GIF version

Theorem lgsdir2 24855
 Description: The Legendre symbol is completely multiplicative at 2. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgsdir2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 · 𝐵) /L 2) = ((𝐴 /L 2) · (𝐵 /L 2)))

Proof of Theorem lgsdir2
StepHypRef Expression
1 0cn 9911 . . . . . 6 0 ∈ ℂ
2 ax-1cn 9873 . . . . . . 7 1 ∈ ℂ
3 neg1cn 11001 . . . . . . 7 -1 ∈ ℂ
42, 3keepel 4105 . . . . . 6 if((𝐵 mod 8) ∈ {1, 7}, 1, -1) ∈ ℂ
51, 4keepel 4105 . . . . 5 if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1)) ∈ ℂ
65mul02i 10104 . . . 4 (0 · if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1))) = 0
7 iftrue 4042 . . . . . 6 (2 ∥ 𝐴 → if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) = 0)
87adantl 481 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 2 ∥ 𝐴) → if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) = 0)
98oveq1d 6564 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 2 ∥ 𝐴) → (if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) · if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1))) = (0 · if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1))))
10 2z 11286 . . . . . . 7 2 ∈ ℤ
11 dvdsmultr1 14857 . . . . . . 7 ((2 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 ∥ 𝐴 → 2 ∥ (𝐴 · 𝐵)))
1210, 11mp3an1 1403 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 ∥ 𝐴 → 2 ∥ (𝐴 · 𝐵)))
1312imp 444 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 2 ∥ 𝐴) → 2 ∥ (𝐴 · 𝐵))
1413iftrued 4044 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 2 ∥ 𝐴) → if(2 ∥ (𝐴 · 𝐵), 0, if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1)) = 0)
156, 9, 143eqtr4a 2670 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 2 ∥ 𝐴) → (if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) · if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1))) = if(2 ∥ (𝐴 · 𝐵), 0, if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1)))
162, 3keepel 4105 . . . . . 6 if((𝐴 mod 8) ∈ {1, 7}, 1, -1) ∈ ℂ
171, 16keepel 4105 . . . . 5 if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) ∈ ℂ
1817mul01i 10105 . . . 4 (if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) · 0) = 0
19 iftrue 4042 . . . . . 6 (2 ∥ 𝐵 → if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1)) = 0)
2019adantl 481 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 2 ∥ 𝐵) → if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1)) = 0)
2120oveq2d 6565 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 2 ∥ 𝐵) → (if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) · if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1))) = (if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) · 0))
22 dvdsmultr2 14859 . . . . . . 7 ((2 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 ∥ 𝐵 → 2 ∥ (𝐴 · 𝐵)))
2310, 22mp3an1 1403 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 ∥ 𝐵 → 2 ∥ (𝐴 · 𝐵)))
2423imp 444 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 2 ∥ 𝐵) → 2 ∥ (𝐴 · 𝐵))
2524iftrued 4044 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 2 ∥ 𝐵) → if(2 ∥ (𝐴 · 𝐵), 0, if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1)) = 0)
2618, 21, 253eqtr4a 2670 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 2 ∥ 𝐵) → (if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) · if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1))) = if(2 ∥ (𝐴 · 𝐵), 0, if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1)))
274mulid2i 9922 . . . . . 6 (1 · if((𝐵 mod 8) ∈ {1, 7}, 1, -1)) = if((𝐵 mod 8) ∈ {1, 7}, 1, -1)
28 iftrue 4042 . . . . . . . 8 ((𝐴 mod 8) ∈ {1, 7} → if((𝐴 mod 8) ∈ {1, 7}, 1, -1) = 1)
2928adantl 481 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (𝐴 mod 8) ∈ {1, 7}) → if((𝐴 mod 8) ∈ {1, 7}, 1, -1) = 1)
3029oveq1d 6564 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (𝐴 mod 8) ∈ {1, 7}) → (if((𝐴 mod 8) ∈ {1, 7}, 1, -1) · if((𝐵 mod 8) ∈ {1, 7}, 1, -1)) = (1 · if((𝐵 mod 8) ∈ {1, 7}, 1, -1)))
31 lgsdir2lem4 24853 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) ∈ {1, 7}) → (((𝐴 · 𝐵) mod 8) ∈ {1, 7} ↔ (𝐵 mod 8) ∈ {1, 7}))
3231adantlr 747 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (𝐴 mod 8) ∈ {1, 7}) → (((𝐴 · 𝐵) mod 8) ∈ {1, 7} ↔ (𝐵 mod 8) ∈ {1, 7}))
3332ifbid 4058 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (𝐴 mod 8) ∈ {1, 7}) → if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1) = if((𝐵 mod 8) ∈ {1, 7}, 1, -1))
3427, 30, 333eqtr4a 2670 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (𝐴 mod 8) ∈ {1, 7}) → (if((𝐴 mod 8) ∈ {1, 7}, 1, -1) · if((𝐵 mod 8) ∈ {1, 7}, 1, -1)) = if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1))
3516mulid1i 9921 . . . . . 6 (if((𝐴 mod 8) ∈ {1, 7}, 1, -1) · 1) = if((𝐴 mod 8) ∈ {1, 7}, 1, -1)
36 iftrue 4042 . . . . . . . 8 ((𝐵 mod 8) ∈ {1, 7} → if((𝐵 mod 8) ∈ {1, 7}, 1, -1) = 1)
3736adantl 481 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (𝐵 mod 8) ∈ {1, 7}) → if((𝐵 mod 8) ∈ {1, 7}, 1, -1) = 1)
3837oveq2d 6565 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (𝐵 mod 8) ∈ {1, 7}) → (if((𝐴 mod 8) ∈ {1, 7}, 1, -1) · if((𝐵 mod 8) ∈ {1, 7}, 1, -1)) = (if((𝐴 mod 8) ∈ {1, 7}, 1, -1) · 1))
39 zcn 11259 . . . . . . . . . . . 12 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
40 zcn 11259 . . . . . . . . . . . 12 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
41 mulcom 9901 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
4239, 40, 41syl2an 493 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
4342ad2antrr 758 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (𝐵 mod 8) ∈ {1, 7}) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
4443oveq1d 6564 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (𝐵 mod 8) ∈ {1, 7}) → ((𝐴 · 𝐵) mod 8) = ((𝐵 · 𝐴) mod 8))
4544eleq1d 2672 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (𝐵 mod 8) ∈ {1, 7}) → (((𝐴 · 𝐵) mod 8) ∈ {1, 7} ↔ ((𝐵 · 𝐴) mod 8) ∈ {1, 7}))
46 lgsdir2lem4 24853 . . . . . . . . . 10 (((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ (𝐵 mod 8) ∈ {1, 7}) → (((𝐵 · 𝐴) mod 8) ∈ {1, 7} ↔ (𝐴 mod 8) ∈ {1, 7}))
4746ancom1s 843 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐵 mod 8) ∈ {1, 7}) → (((𝐵 · 𝐴) mod 8) ∈ {1, 7} ↔ (𝐴 mod 8) ∈ {1, 7}))
4847adantlr 747 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (𝐵 mod 8) ∈ {1, 7}) → (((𝐵 · 𝐴) mod 8) ∈ {1, 7} ↔ (𝐴 mod 8) ∈ {1, 7}))
4945, 48bitrd 267 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (𝐵 mod 8) ∈ {1, 7}) → (((𝐴 · 𝐵) mod 8) ∈ {1, 7} ↔ (𝐴 mod 8) ∈ {1, 7}))
5049ifbid 4058 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (𝐵 mod 8) ∈ {1, 7}) → if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1) = if((𝐴 mod 8) ∈ {1, 7}, 1, -1))
5135, 38, 503eqtr4a 2670 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (𝐵 mod 8) ∈ {1, 7}) → (if((𝐴 mod 8) ∈ {1, 7}, 1, -1) · if((𝐵 mod 8) ∈ {1, 7}, 1, -1)) = if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1))
52 neg1mulneg1e1 11122 . . . . . 6 (-1 · -1) = 1
53 iffalse 4045 . . . . . . . 8 (¬ (𝐴 mod 8) ∈ {1, 7} → if((𝐴 mod 8) ∈ {1, 7}, 1, -1) = -1)
54 iffalse 4045 . . . . . . . 8 (¬ (𝐵 mod 8) ∈ {1, 7} → if((𝐵 mod 8) ∈ {1, 7}, 1, -1) = -1)
5553, 54oveqan12d 6568 . . . . . . 7 ((¬ (𝐴 mod 8) ∈ {1, 7} ∧ ¬ (𝐵 mod 8) ∈ {1, 7}) → (if((𝐴 mod 8) ∈ {1, 7}, 1, -1) · if((𝐵 mod 8) ∈ {1, 7}, 1, -1)) = (-1 · -1))
5655adantl 481 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (¬ (𝐴 mod 8) ∈ {1, 7} ∧ ¬ (𝐵 mod 8) ∈ {1, 7})) → (if((𝐴 mod 8) ∈ {1, 7}, 1, -1) · if((𝐵 mod 8) ∈ {1, 7}, 1, -1)) = (-1 · -1))
57 lgsdir2lem3 24852 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5}))
5857ad2ant2r 779 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5}))
59 elun 3715 . . . . . . . . . . 11 ((𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5}) ↔ ((𝐴 mod 8) ∈ {1, 7} ∨ (𝐴 mod 8) ∈ {3, 5}))
6058, 59sylib 207 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) → ((𝐴 mod 8) ∈ {1, 7} ∨ (𝐴 mod 8) ∈ {3, 5}))
6160orcanai 950 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ ¬ (𝐴 mod 8) ∈ {1, 7}) → (𝐴 mod 8) ∈ {3, 5})
62 lgsdir2lem3 24852 . . . . . . . . . . . 12 ((𝐵 ∈ ℤ ∧ ¬ 2 ∥ 𝐵) → (𝐵 mod 8) ∈ ({1, 7} ∪ {3, 5}))
6362ad2ant2l 778 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) → (𝐵 mod 8) ∈ ({1, 7} ∪ {3, 5}))
64 elun 3715 . . . . . . . . . . 11 ((𝐵 mod 8) ∈ ({1, 7} ∪ {3, 5}) ↔ ((𝐵 mod 8) ∈ {1, 7} ∨ (𝐵 mod 8) ∈ {3, 5}))
6563, 64sylib 207 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) → ((𝐵 mod 8) ∈ {1, 7} ∨ (𝐵 mod 8) ∈ {3, 5}))
6665orcanai 950 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ ¬ (𝐵 mod 8) ∈ {1, 7}) → (𝐵 mod 8) ∈ {3, 5})
6761, 66anim12dan 878 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (¬ (𝐴 mod 8) ∈ {1, 7} ∧ ¬ (𝐵 mod 8) ∈ {1, 7})) → ((𝐴 mod 8) ∈ {3, 5} ∧ (𝐵 mod 8) ∈ {3, 5}))
68 lgsdir2lem5 24854 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) ∈ {3, 5} ∧ (𝐵 mod 8) ∈ {3, 5})) → ((𝐴 · 𝐵) mod 8) ∈ {1, 7})
6968adantlr 747 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ ((𝐴 mod 8) ∈ {3, 5} ∧ (𝐵 mod 8) ∈ {3, 5})) → ((𝐴 · 𝐵) mod 8) ∈ {1, 7})
7067, 69syldan 486 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (¬ (𝐴 mod 8) ∈ {1, 7} ∧ ¬ (𝐵 mod 8) ∈ {1, 7})) → ((𝐴 · 𝐵) mod 8) ∈ {1, 7})
7170iftrued 4044 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (¬ (𝐴 mod 8) ∈ {1, 7} ∧ ¬ (𝐵 mod 8) ∈ {1, 7})) → if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1) = 1)
7252, 56, 713eqtr4a 2670 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (¬ (𝐴 mod 8) ∈ {1, 7} ∧ ¬ (𝐵 mod 8) ∈ {1, 7})) → (if((𝐴 mod 8) ∈ {1, 7}, 1, -1) · if((𝐵 mod 8) ∈ {1, 7}, 1, -1)) = if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1))
7334, 51, 72pm2.61ddan 829 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) → (if((𝐴 mod 8) ∈ {1, 7}, 1, -1) · if((𝐵 mod 8) ∈ {1, 7}, 1, -1)) = if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1))
74 iffalse 4045 . . . . . 6 (¬ 2 ∥ 𝐴 → if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) = if((𝐴 mod 8) ∈ {1, 7}, 1, -1))
75 iffalse 4045 . . . . . 6 (¬ 2 ∥ 𝐵 → if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1)) = if((𝐵 mod 8) ∈ {1, 7}, 1, -1))
7674, 75oveqan12d 6568 . . . . 5 ((¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵) → (if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) · if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1))) = (if((𝐴 mod 8) ∈ {1, 7}, 1, -1) · if((𝐵 mod 8) ∈ {1, 7}, 1, -1)))
7776adantl 481 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) → (if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) · if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1))) = (if((𝐴 mod 8) ∈ {1, 7}, 1, -1) · if((𝐵 mod 8) ∈ {1, 7}, 1, -1)))
78 ioran 510 . . . . . 6 (¬ (2 ∥ 𝐴 ∨ 2 ∥ 𝐵) ↔ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵))
79 2prm 15243 . . . . . . . . 9 2 ∈ ℙ
80 euclemma 15263 . . . . . . . . 9 ((2 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 ∥ (𝐴 · 𝐵) ↔ (2 ∥ 𝐴 ∨ 2 ∥ 𝐵)))
8179, 80mp3an1 1403 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 ∥ (𝐴 · 𝐵) ↔ (2 ∥ 𝐴 ∨ 2 ∥ 𝐵)))
8281notbid 307 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (¬ 2 ∥ (𝐴 · 𝐵) ↔ ¬ (2 ∥ 𝐴 ∨ 2 ∥ 𝐵)))
8382biimpar 501 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (2 ∥ 𝐴 ∨ 2 ∥ 𝐵)) → ¬ 2 ∥ (𝐴 · 𝐵))
8478, 83sylan2br 492 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) → ¬ 2 ∥ (𝐴 · 𝐵))
85 iffalse 4045 . . . . 5 (¬ 2 ∥ (𝐴 · 𝐵) → if(2 ∥ (𝐴 · 𝐵), 0, if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1)) = if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1))
8684, 85syl 17 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) → if(2 ∥ (𝐴 · 𝐵), 0, if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1)) = if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1))
8773, 77, 863eqtr4d 2654 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) → (if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) · if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1))) = if(2 ∥ (𝐴 · 𝐵), 0, if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1)))
8815, 26, 87pm2.61ddan 829 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) · if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1))) = if(2 ∥ (𝐴 · 𝐵), 0, if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1)))
89 lgs2 24839 . . 3 (𝐴 ∈ ℤ → (𝐴 /L 2) = if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)))
90 lgs2 24839 . . 3 (𝐵 ∈ ℤ → (𝐵 /L 2) = if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1)))
9189, 90oveqan12d 6568 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 /L 2) · (𝐵 /L 2)) = (if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) · if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1))))
92 zmulcl 11303 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 · 𝐵) ∈ ℤ)
93 lgs2 24839 . . 3 ((𝐴 · 𝐵) ∈ ℤ → ((𝐴 · 𝐵) /L 2) = if(2 ∥ (𝐴 · 𝐵), 0, if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1)))
9492, 93syl 17 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 · 𝐵) /L 2) = if(2 ∥ (𝐴 · 𝐵), 0, if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1)))
9588, 91, 943eqtr4rd 2655 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 · 𝐵) /L 2) = ((𝐴 /L 2) · (𝐵 /L 2)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∨ wo 382   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ∪ cun 3538  ifcif 4036  {cpr 4127   class class class wbr 4583  (class class class)co 6549  ℂcc 9813  0cc0 9815  1c1 9816   · cmul 9820  -cneg 10146  2c2 10947  3c3 10948  5c5 10950  7c7 10952  8c8 10953  ℤcz 11254   mod cmo 12530   ∥ cdvds 14821  ℙcprime 15223   /L clgs 24819 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-dvds 14822  df-gcd 15055  df-prm 15224  df-phi 15309  df-pc 15380  df-lgs 24820 This theorem is referenced by:  lgsdirprm  24856
 Copyright terms: Public domain W3C validator