MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsdilem Structured version   Visualization version   GIF version

Theorem lgsdilem 24849
Description: Lemma for lgsdi 24859 and lgsdir 24857: the sign part of the Legendre symbol is multiplicative. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgsdilem (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → if((𝑁 < 0 ∧ (𝐴 · 𝐵) < 0), -1, 1) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1)))

Proof of Theorem lgsdilem
StepHypRef Expression
1 simplrr 797 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → 𝐵 ≠ 0)
21biantrud 527 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → (0 ≤ 𝐵 ↔ (0 ≤ 𝐵𝐵 ≠ 0)))
3 0re 9919 . . . . . . . . . . 11 0 ∈ ℝ
4 simpl2 1058 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐵 ∈ ℤ)
54zred 11358 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐵 ∈ ℝ)
65adantr 480 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → 𝐵 ∈ ℝ)
7 ltlen 10017 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐵 ↔ (0 ≤ 𝐵𝐵 ≠ 0)))
83, 6, 7sylancr 694 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → (0 < 𝐵 ↔ (0 ≤ 𝐵𝐵 ≠ 0)))
9 simpl1 1057 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐴 ∈ ℤ)
109zred 11358 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐴 ∈ ℝ)
1110adantr 480 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → 𝐴 ∈ ℝ)
1211renegcld 10336 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → -𝐴 ∈ ℝ)
1312recnd 9947 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → -𝐴 ∈ ℂ)
1413mul01d 10114 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → (-𝐴 · 0) = 0)
1511recnd 9947 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → 𝐴 ∈ ℂ)
166recnd 9947 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → 𝐵 ∈ ℂ)
1715, 16mulneg1d 10362 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → (-𝐴 · 𝐵) = -(𝐴 · 𝐵))
1814, 17breq12d 4596 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → ((-𝐴 · 0) < (-𝐴 · 𝐵) ↔ 0 < -(𝐴 · 𝐵)))
19 0red 9920 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → 0 ∈ ℝ)
2010lt0neg1d 10476 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝐴 < 0 ↔ 0 < -𝐴))
2120biimpa 500 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → 0 < -𝐴)
22 ltmul2 10753 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (-𝐴 ∈ ℝ ∧ 0 < -𝐴)) → (0 < 𝐵 ↔ (-𝐴 · 0) < (-𝐴 · 𝐵)))
2319, 6, 12, 21, 22syl112anc 1322 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → (0 < 𝐵 ↔ (-𝐴 · 0) < (-𝐴 · 𝐵)))
2410, 5remulcld 9949 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝐴 · 𝐵) ∈ ℝ)
2524adantr 480 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → (𝐴 · 𝐵) ∈ ℝ)
2625lt0neg1d 10476 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → ((𝐴 · 𝐵) < 0 ↔ 0 < -(𝐴 · 𝐵)))
2718, 23, 263bitr4d 299 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → (0 < 𝐵 ↔ (𝐴 · 𝐵) < 0))
282, 8, 273bitr2rd 296 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → ((𝐴 · 𝐵) < 0 ↔ 0 ≤ 𝐵))
29 lenlt 9995 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ 𝐵 ↔ ¬ 𝐵 < 0))
303, 6, 29sylancr 694 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → (0 ≤ 𝐵 ↔ ¬ 𝐵 < 0))
3128, 30bitrd 267 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → ((𝐴 · 𝐵) < 0 ↔ ¬ 𝐵 < 0))
3231ifbid 4058 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → if((𝐴 · 𝐵) < 0, -1, 1) = if(¬ 𝐵 < 0, -1, 1))
33 oveq2 6557 . . . . . . . . . 10 (if(𝐵 < 0, -1, 1) = -1 → (-1 · if(𝐵 < 0, -1, 1)) = (-1 · -1))
34 neg1mulneg1e1 11122 . . . . . . . . . 10 (-1 · -1) = 1
3533, 34syl6eq 2660 . . . . . . . . 9 (if(𝐵 < 0, -1, 1) = -1 → (-1 · if(𝐵 < 0, -1, 1)) = 1)
36 oveq2 6557 . . . . . . . . . 10 (if(𝐵 < 0, -1, 1) = 1 → (-1 · if(𝐵 < 0, -1, 1)) = (-1 · 1))
37 ax-1cn 9873 . . . . . . . . . . 11 1 ∈ ℂ
3837mulm1i 10354 . . . . . . . . . 10 (-1 · 1) = -1
3936, 38syl6eq 2660 . . . . . . . . 9 (if(𝐵 < 0, -1, 1) = 1 → (-1 · if(𝐵 < 0, -1, 1)) = -1)
4035, 39ifsb 4049 . . . . . . . 8 (-1 · if(𝐵 < 0, -1, 1)) = if(𝐵 < 0, 1, -1)
41 ifnot 4083 . . . . . . . 8 if(¬ 𝐵 < 0, -1, 1) = if(𝐵 < 0, 1, -1)
4240, 41eqtr4i 2635 . . . . . . 7 (-1 · if(𝐵 < 0, -1, 1)) = if(¬ 𝐵 < 0, -1, 1)
4332, 42syl6eqr 2662 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → if((𝐴 · 𝐵) < 0, -1, 1) = (-1 · if(𝐵 < 0, -1, 1)))
44 iftrue 4042 . . . . . . . 8 (𝐴 < 0 → if(𝐴 < 0, -1, 1) = -1)
4544adantl 481 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → if(𝐴 < 0, -1, 1) = -1)
4645oveq1d 6564 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → (if(𝐴 < 0, -1, 1) · if(𝐵 < 0, -1, 1)) = (-1 · if(𝐵 < 0, -1, 1)))
4743, 46eqtr4d 2647 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → if((𝐴 · 𝐵) < 0, -1, 1) = (if(𝐴 < 0, -1, 1) · if(𝐵 < 0, -1, 1)))
48 iffalse 4045 . . . . . . . 8 𝐴 < 0 → if(𝐴 < 0, -1, 1) = 1)
4948adantl 481 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → if(𝐴 < 0, -1, 1) = 1)
5049oveq1d 6564 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → (if(𝐴 < 0, -1, 1) · if(𝐵 < 0, -1, 1)) = (1 · if(𝐵 < 0, -1, 1)))
51 neg1cn 11001 . . . . . . . . 9 -1 ∈ ℂ
5251, 37keepel 4105 . . . . . . . 8 if(𝐵 < 0, -1, 1) ∈ ℂ
5352mulid2i 9922 . . . . . . 7 (1 · if(𝐵 < 0, -1, 1)) = if(𝐵 < 0, -1, 1)
545adantr 480 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → 𝐵 ∈ ℝ)
55 0red 9920 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → 0 ∈ ℝ)
5610adantr 480 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → 𝐴 ∈ ℝ)
57 lenlt 9995 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐴 ↔ ¬ 𝐴 < 0))
583, 10, 57sylancr 694 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (0 ≤ 𝐴 ↔ ¬ 𝐴 < 0))
5958biimpar 501 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → 0 ≤ 𝐴)
60 simplrl 796 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → 𝐴 ≠ 0)
6156, 59, 60ne0gt0d 10053 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → 0 < 𝐴)
62 ltmul2 10753 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 0 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (𝐵 < 0 ↔ (𝐴 · 𝐵) < (𝐴 · 0)))
6354, 55, 56, 61, 62syl112anc 1322 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → (𝐵 < 0 ↔ (𝐴 · 𝐵) < (𝐴 · 0)))
6456recnd 9947 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → 𝐴 ∈ ℂ)
6564mul01d 10114 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → (𝐴 · 0) = 0)
6665breq2d 4595 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → ((𝐴 · 𝐵) < (𝐴 · 0) ↔ (𝐴 · 𝐵) < 0))
6763, 66bitrd 267 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → (𝐵 < 0 ↔ (𝐴 · 𝐵) < 0))
6867ifbid 4058 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → if(𝐵 < 0, -1, 1) = if((𝐴 · 𝐵) < 0, -1, 1))
6953, 68syl5eq 2656 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → (1 · if(𝐵 < 0, -1, 1)) = if((𝐴 · 𝐵) < 0, -1, 1))
7050, 69eqtr2d 2645 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → if((𝐴 · 𝐵) < 0, -1, 1) = (if(𝐴 < 0, -1, 1) · if(𝐵 < 0, -1, 1)))
7147, 70pm2.61dan 828 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → if((𝐴 · 𝐵) < 0, -1, 1) = (if(𝐴 < 0, -1, 1) · if(𝐵 < 0, -1, 1)))
7271adantr 480 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 < 0) → if((𝐴 · 𝐵) < 0, -1, 1) = (if(𝐴 < 0, -1, 1) · if(𝐵 < 0, -1, 1)))
73 simpr 476 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 < 0) → 𝑁 < 0)
7473biantrurd 528 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 < 0) → ((𝐴 · 𝐵) < 0 ↔ (𝑁 < 0 ∧ (𝐴 · 𝐵) < 0)))
7574ifbid 4058 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 < 0) → if((𝐴 · 𝐵) < 0, -1, 1) = if((𝑁 < 0 ∧ (𝐴 · 𝐵) < 0), -1, 1))
7673biantrurd 528 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 < 0) → (𝐴 < 0 ↔ (𝑁 < 0 ∧ 𝐴 < 0)))
7776ifbid 4058 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 < 0) → if(𝐴 < 0, -1, 1) = if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1))
7873biantrurd 528 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 < 0) → (𝐵 < 0 ↔ (𝑁 < 0 ∧ 𝐵 < 0)))
7978ifbid 4058 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 < 0) → if(𝐵 < 0, -1, 1) = if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1))
8077, 79oveq12d 6567 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 < 0) → (if(𝐴 < 0, -1, 1) · if(𝐵 < 0, -1, 1)) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1)))
8172, 75, 803eqtr3d 2652 . 2 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 < 0) → if((𝑁 < 0 ∧ (𝐴 · 𝐵) < 0), -1, 1) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1)))
82 simpr 476 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝑁 < 0) → ¬ 𝑁 < 0)
8382intnanrd 954 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝑁 < 0) → ¬ (𝑁 < 0 ∧ (𝐴 · 𝐵) < 0))
8483iffalsed 4047 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝑁 < 0) → if((𝑁 < 0 ∧ (𝐴 · 𝐵) < 0), -1, 1) = 1)
85 1t1e1 11052 . . . 4 (1 · 1) = 1
8684, 85syl6eqr 2662 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝑁 < 0) → if((𝑁 < 0 ∧ (𝐴 · 𝐵) < 0), -1, 1) = (1 · 1))
8782intnanrd 954 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝑁 < 0) → ¬ (𝑁 < 0 ∧ 𝐴 < 0))
8887iffalsed 4047 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝑁 < 0) → if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) = 1)
8982intnanrd 954 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝑁 < 0) → ¬ (𝑁 < 0 ∧ 𝐵 < 0))
9089iffalsed 4047 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝑁 < 0) → if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1) = 1)
9188, 90oveq12d 6567 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝑁 < 0) → (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1)) = (1 · 1))
9286, 91eqtr4d 2647 . 2 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝑁 < 0) → if((𝑁 < 0 ∧ (𝐴 · 𝐵) < 0), -1, 1) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1)))
9381, 92pm2.61dan 828 1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → if((𝑁 < 0 ∧ (𝐴 · 𝐵) < 0), -1, 1) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  ifcif 4036   class class class wbr 4583  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   · cmul 9820   < clt 9953  cle 9954  -cneg 10146  cz 11254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-z 11255
This theorem is referenced by:  lgsdir  24857  lgsdi  24859
  Copyright terms: Public domain W3C validator